ARCHEGONIATES

Archegoniate probably originated from an ancestral green alga-

- a hollow container housing the egg cell.
- The egg cell is the precursor of the sporophytic generation.
- The archegonium is differentiated into venter and neck
 - sexual reproduction in the archegoniates is the emergence of heterospory
 - This phenomenon leads to the formation of spores of two sizes, microspores and megaspores
 - The zygote, a product of fertilization of the egg cell in the archegonium is the progenitor of the sporophytic generation
 - **Def.** Archegoniates are the group of primitive plants, which bears the female reproductive organ is an archegonium (a multicellular, often flask-shaped, egg-producing organ) occurring in mosses, liverworts, ferns, and most gymnosperms

: Unifying characters of archegoniates:

The archegoniates seem too have originated from a monophyletic group of ancient stock of aquatic green algae.

- Present of sexual organs the female called archegonium and the male called the antheridium.
- 3. The presence of Chloroplasts containing chlorophyll a, b and carotene.
- 4. The presence of multicellular gametophytic and sporophytic generation.
- Heteromorphic alternation of generation.
- 6. The morphological reduction of the sexual or the gametophytic phase was evident in the life cycle of archegoniate.
- Provides protection to their embryo.
- 8. Male gametes are flagellated and motile in bryophytes, pteridophytes, (Cycadales, Ginkgoales) while the female gamete (egg) is non-motile.

Bryophytes and Pteridophytes depend upon the presence of "fluid water" for fertilization. In gymnosperms, pollen grains germinate to form a pollen tube (siphonogamy) which is not dependent on external fluid water to reach the archegonial neck.

- The transmigration of plants to the land habit led to specialization coupled with varied spore dispersal mechanisms leading to their successful spread on land with genetic variation.
- Plants adapted to life on land by internalizing the external atmosphere and exploring the soil in an intensive way.
- 12. Spores also became resistant to desiccation through further specialization in seed plants.
- Differentiated rhizoids and roots to provide strong anchorage and efficient supply of water and mineral nutrients.

: Unifying characters of archegoniates:

- Increased the green surface area to provide more chlorophyll for efficient photosynthesis.
- Developed an efficient vascular system to provide water to every part of the plant body.
- 16. Evolved the mechanism of transpiration to regulate the internal temperature.
- Developed waxy cuticle to restrict water loss and formed stomatas to regulate gaseous exchange.
- Differentiated tissues with thickened cell walls (collenchyma) and lignified walls (sclerenchyma) to support the erect habit.
- 19 Efficient spore dispersal mechanism.
- 20. The archegoniates evolved several adaptive strategies to survive on land