
Kinetic Theory of Gases: 

Assumptions of the kinetic theory of gases: 

In developing the kinetic theory of gases, following are the simplified examples that have been 
made: 

(i) A gas consists of a large number of identical molecules which are minute hard elastic spheres 
which are moving randomly in all possible directions with different velocities. 

(ii) During the motion, molecules collide with one another and also with the walls of the container. 
The collisions are perfectly elastic, i.e., there is no loss of kinetic energy when the collisions occur. 
The chance of collision is same in all directions and collisions do not affect the density of molecules. 

(iii) The molecules exert no forces on each other except when they actually collide. Therefore, 
between two successive collisions molecules move in straight lines with uniform velocity. 

(iv) The collisions are instantaneous, i.e. the duration of collision is negligible compared to the time 
between collisions. 

(vi) Since the molecules are like geometrical point masses, the actual volume occupied by them is 
negligible compared to the total volume of the gas (i.e. the container). 

Deduction of the perfect gas equation: 

 

Let us consider a perfect gas enclosed in a container such that one of its surface is perpendicular to 
the X-axis. In the figure, BAE represents the surface. 

Let c be the velocity of a molecule which has three components u , v  and w  along the three 
rectangular coordinates X, Y and Z such that 

2 2 2 2c u v w   ....................................(1) 

Now, due to collision with the wall DAE, the X-component of velocity which is u, suffers change in 
direction where the other two components v , w  remain unchanged. The change in momentum of a 
molecule is  

( ) 2mu mu mu    



If un  be the number of molecules per unit volume moving with velocity u , the number of molecules 

which will strike unit area of the wall in time dt  would be contained in a cylinder of area unity and 
height udt . 

Number of such molecules in the cylinder = un (udt ) 

Total change in momentum per unit area suffered by all such molecules in time dt   = 
2.2 2u un udt mu mn u dt  

Therefore, the above quantity for all the molecules moving in the positive X-direction, i.e., total 

change in momentum per unit area in time dt  is 2

0
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If the above change in momentum results in force F


, then 
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Since the area involved here is unity, F


 is the pressure xp . 
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Where un  is a function of u . 

If 2u be the mean square velocity, we can write 
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Where n  is the number of molecules per unit volume. 

The factor 
1
2

arises due to the fact that molecules only moving in the positive X-direction are being 

considered. 
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Similarly, 2
yp mnv  and 2

zp mnw . 

Therefore, the expression for the pressure is 

2 2 2
x y zp p p p mnu mnv mnw       

But 2 2 2 21
3

u v w c   , where 2c  is the mean square velocity. 

 2 21 1
3 3

p mnc mnC  , 

where 2C c is the root mean square or r.m.s. velocity. 

The expression for pressure can also be written as 

21
3

p C  

where mn  is the density of the gas. 

Deductions from pressure expression: 

(i) R.M.S velocity: 

Pressure p  is given by 

21
3

p C  


3pC


  

This gives the expression of r.m.s velocity of the gas. It should be noted that lighter the gas, faster 
would be its motion. 

Let us consider a gramme-mole of the gas. If M be the molecular weight and V be the volume of 1 
gm-mole of the gas, then 

M
V

   
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   
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pV MC  



For 1 gm-mole of the gas, we have pV RT . Therefore, 

21
3
MC RT  


3RTC
M

  

This is an alternate expression for the r.m.s velocity of the gas. From this expression we can see that 

The r.m.s velocity is proportional to the square root of temperature the gas, i.e., C T . 

(ii) Pressure and kinetic energy: 

We have, 

2 21 2 1 2.
3 3 2 3

p C C E     

where 21
2

E C is the kinetic energy of the gas molecules per unit volume. 

Thus, the pressure of a gas is equal to two-thirds of the mean kinetic energy of translation of the gas 
molecules per unit volume. 

This is one of the most important conclusions of the kinetic theory of an ideal gas. The above 
equation gives a relationship between molecular quantities, i.e, quantities relating to an individual 
molecule, and the pressure of the gas which is a macroscopic quantity which can be directly 
measured. It is sometimes called the fundamental equation of the kinetic theory. 

(iii) Boyle’s law: 

The pressure of a gas is given by 

21
3

p C  

If M be the mass of a gas that occupies a volume V at temperature T, then density, 
M
V

  . 

 21
3
Mp C
V
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 21
3

pV MC  

At constant temperature r.m.s velocity C is a constant. Hence, at constant temperature pV 
constant. This is Boyle’slaw. 



(iv) Gay-Lussac law (Charles’ law): 

We know that 21
3

pV MC . 

 2pV C  

Again, 2C T  

Therefore, pV T  

Or, 
V
T
 constant at constant pressure. 

This is Gay-Lussac law or Charles’ law. 

(v) Dalton’s law of partial pressures: 

Let 1 2 3, , ,.......m m m be the molecular masses of different gases 1,2,3,.......  and 1 2 3, , ,.......n n n be 

their respective number of molecules per unit volume. If we assume no interaction between gas 
molecules, at equilibrium the total pressure will be due to all the different types of molecules. 
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Thus, the pressure of a mixture of gases is equal to the sum of partial pressures of its component 
gases. This is Dalton’s law of partial pressures. 

(vi) Avogadro’s hypothesis: 

Let us consider two different gases contained in two different enclosures, each of volume V. Let 

1 1 1, ,m N C be the molecular mass, number of molecules per unit volume and r.m.s velocity 

respectively of gas1; let 2 2 2, ,m N C be the corresponding quantities for gas 2. 

When the pressure is same for both the gases, we have  
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Or, 2 2
1 1 1 2 2 2

1 1
3 3
m N C m N C ..................................(1) 

When the temperature is the same, we have 

2 2
1 1 2 2

1 1
2 2
mC m C .............................(2) 

Dividing eq. (1) by eq. (2), we have 

1 2N N  

Thus, for the same temperature and pressure, equal volumes of all gases contain equal number of 
molecules. This is Avogadro’s hypothesis. 

(vii) Graham’s law of diffusion: 

Let two vessels of equal volume contain two gases 1 and 2, at the same temperature and pressure. 
According to Avogadro’s hypothesis, each gas have the same number of molecules. Since the 
number of molecules is the same, the number of molecules 1n  and 2n  which diffuse (provided the 

diffusion is allowed) will be in the ration of their speeds, which again will be in the same ratio as 
r.m.s speeds. 
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Since the pressures are also the same, we may write 
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From equations (a) and (b) we have, 
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This is Graham’s law of diffusion. 

(viii) Clapeyron’s equation: 

The pressure p is given by 

2 21 1
3 3 A

Mp mnC nC
N

  , 



where M is the molecular weight of the gas and AN is the Avogadro’s number. 
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This is Clapeyron’s equation. 

Using the result of the kinetic theory of gases, we thus obtain the laws controlling the behaviours of 
gases that were established long before the theory was developed. To a certain extent this confirms 
the truth of the theory. 

Introduction of temperature: 

To introduce the temperature in kinetic theory of gases, we recall the equation 

2 3RTC
M

 ..............(1) 

We see that 2C is proportional to the absolute temperature. But mean kinetic energy of translation 

is proportional to 2C . Thus we may accordingly consider that the mean kinetic energy of translation 
manifests itself as the temperature of the gas. This is the kinetic interpretation of temperature. 

At 0T  , 0C   which means that, according to the kinetic theory, the absolute zero is the 
temperature at which all molecular motions cease.  However, this conclusion is not justified as the 
perfect gas state itself does not hold up to absolute zero of temperature. Further, quantum theory 
predicts the existence of some energy at absolute zero, called the ‘zero-point’ energy. 

From eq. (1), we may write 

21 3
2 2
MC RT  

Dividing both sides by AN , the Avogadro’s number 

21 3
2 2A A

M RC T
N N
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Or, 21 3
2 2
mC kT .............................(2) 

Here m is the molecular mass and k is the Boltzmann constant. 



Eq. (2) shows that the mean kinetic energy of translation per molecule is 
3
2
kT and is proportional to 

the absolute temperature. So corresponding to a temperature, there is a kinetic energy and 
molecular collisions lead to a uniform temperature (thermal equilibrium). 

Various constants involved in kinetic theory: 

(i) Avogadro number ( AN ): 

If m be the molecular mass and M be the molecular weight, then 

24

2
3.32X10A

M gmN
m gm  , here we have taken H2 gas 

 236.023X10 /AN gm mole   

(ii) Universal gas constant ( R ): 

We know, pV RT for one mole of a gas. 

3

7

7

7

(76X13.6X981)X(22.4X10 ) erg / mole / K
273

=8.31X10 erg / mole / K=8.31Joule / mole / K
8.31X10= / mole / K= 1.99Cal/ mole/ K
4.18X10
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273
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(iii) Boltzmann constant ( k ): 

7
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8.31X10 erg / mole / K 1.38X10 erg/ K 1.38X10 J/ K
6.023X10 / moleA
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