

Dr. Urmi Roy

Classification of living organisms

- In Linnaeus' time a **Two Kingdom** system of classification
 - *Plantae*: all plants
 - Animalia: all animals.
- But this system did not distinguish between
 - The eukaryotes and prokaryotes,
 - Unicellular and multicellular organisms
 - Photosynthetic (green algae) and non-photosynthetic (fungi) organisms.

A Five Kingdom Classification.

- R.H. Whittaker (1969) proposed a Five Kingdom Classification.
- The kingdoms were named
 - Monera,
 - Protista,
 - Fungi,
 - Plantae
 - Animalia.
- The main criteria for classification
 - Cell structure,
 - Body organization,
 - Mode of nutrition,
 - Reproduction and
 - Phylogenetic relationships.

Characteristics of the Five Kingdoms

Characters	Five Kingdoms				
	Monera	Protista	Fungi	Plantae	Animalia
Cell type	Prokaryotic	Eukaryotic	Eukaryotic	Eukaryotic	Eukaryotic
Cell wall	Noncellulosic (Polysaccharide + amino acid)	Present in some	Present with chitin	Present (cellulose)	Absent
Nuclear membrane	Absent	Present	Present	Present	Present
Body organisation	Cellular	Cellular	Multiceullar/ loose tissue	Tissue/ organ	Tissue/organ/ organ system
Mode of nutrition	Autotrophic (chemosyn- thetic and photosynthetic) and Hetero- trophic (sapro- phytic/para- sitic)	Autotrophic (Photosyn- thetic) and Hetero- trophic	Heterotrophic (Saprophytic/ Parasitic)	Autotrophic (Photosyn- thetic)	Heterotrophic (Holozoic/ Saprophytic etc.)

Classification of Plants

- Plants into two major groups:
 - Non-vascular: Composed of early plants.
 - Plants lack vascular tissues that can help them transport water and nutrients.
 - They are considered to be the earliest living plants in the planet.
 - The most common non-vascular plants: Bryophyta
 - Vascular (tracheophytes): Plants which had developed a vascular system.
 - Possess vascular tissues (xylem and phloem) that aid them to transport water and minerals.
 - Plants like the members of the Phylum
 - Pteridophyta
 - Gymnosperms and
 - Angiosperms.

The basic parts of a flowering

• Plant include

- Leaves,
- Stem,
- Root,
- Flower, and
- Seeds.

Pteridophytes

Gymnosperm

Angiosperm

Plant life cycle

- It comprises
 - Seed germination,
 - Seedling growth,
 - Plant maturity,
 - Flower development,
 - Fertilization, and
 - Seed production.

The life cycles of all sexually reproducing plants

• It follows a pattern of alternation between

- a haploid, sexual generation called gametophyte with
- a diploid, asexual generation called sporophyte.

Alternation of generations

Haploid

Sporophyte

Diplolo

Haploid

pores

Hoploid

zygote

Diploid

Fectilizat

• Plants have distinct

- Haploid sexual and
- Diploid asexual stages.
- A multicellular haploid gametophyte (n chromosomes) alternates with a multicellular diploid sporophyte (2n chromosomes).
- A mature sporophyte produces haploid spores by meiosis, a process which reduces the number of chromosomes to half, from 2n to n.
- It is the alteration between a diploid (2n) generation of sporophytes and a haploid (n) generation of gametophytes.

- The haploid spores germinate and grow into a haploid gametophyte.
- At maturity, the gametophyte produces gametes by mitosis, which does not alter the number of chromosomes.
- Two gametes (originating from different organisms of the same species or from the same organism) fuse to produce a diploid zygote, which develops into a diploid sporophyte.
- This cycle, from gametophyte to sporophyte (or equally from sporophyte to gametophyte), is the way in which all land plants and many algae undergo sexual reproduction.

Fundamental elements

- Two single-celled haploid gametes (each containing n unpaired chromosomes) fuse to form a single-celled diploid zygote (containing 2n chromosomes).
- The single-celled diploid zygote germinates, dividing by the normal process (mitosis), which maintains the number of chromosomes at 2n.
- The result is a multi-cellular diploid organism, called the *sporophyte* (at maturity it produces spores).
- When it reaches maturity, the sporophyte produces one or more sporangia (singular: sporangium) which are the organs that produce diploid spore mother cells (sporocytes).
- These divide by meiosis that reduces the number of chromosomes by a half. This initially results in four single-celled haploid spores, each containing n unpaired chromosomes.
- The single-celled haploid spore germinates, dividing by the normal process (mitosis), which maintains the number of chromosomes at n. The result is a multi-cellular haploid organism, called the gametophyte (it produces gametes).
- When it reaches maturity, the gametophyte produces one or more gametangia (singular: gametangium) that produce haploid gametes.

Types

- two types- isomorphic and heteromorphy.
- In *isomorphic* (or homologous) type both the alternating generations are morphologically similar,
- In *heteromophic* (or heterologous) type of alternation of generations both the generations of life cycle are morphologically dissimilar.
- In the life cycle, any one of the two generations is found to be always more conspicuous and survive a greater proportion is called as dominant generation.
- In algae and bryophytes: Gametophyte is dominant and visible.
- In pteridophytes, gymnosperms and angiosperms: The plant body is a sporophyte which is dominant and the gametophyte generation is less conspicuous.

Life cycle patterns in plants a) Haplontic, b) Diplontic, c) Haplo-diplontic

degeneration of gametophytic generation in plant kingdom.