Chemical Kinetics

Rate of Reaction:

The quantity of a reactant species consumed or the quantity of a product species formed in unit time in a chemical reaction is called the rate of the reaction. Consider a reaction, $A \rightarrow B$

$$Rate = -\frac{d[A]}{dt} = +\frac{d[B]}{dt}$$

-ve sign indicates that with progress of time concentration of A will decrease.

Rate Laws & Rate Constant:

Let us consider a general reaction,

$$A + B \rightarrow Product$$

According to rate law,

$$Rate \propto [A][B]$$

$$Or, Rate = K[A][B]$$

This is known as rate law & 'K' is called rate constant which is independent of concentration but depend on temperature.

Mention the factors affect the rate of a chemical reaction.

Factors affecting the rate of a chemical reaction are following -

- i. Nature of reactants
- ii. Concentration of reactants
- iii. Effect of temperature
- iv. Surface area of reactants
- v. Presence of catalyst
- vi. Presence of light

Order of a Reaction:

Order of a reaction is defined as the sum of the powers or exponents to which the molar concentrations are raised in the rate law or rate equation.

Let us consider a general reaction,

 $lA + mB \rightarrow Product$

According to rate law,

$R = K[A]^a[B]^b$

where a & b may or may not be equal to l & m respectively. Here the overall order of the reaction is (a + b).

- \checkmark Order of a reaction is purely experimental quantity.
- ✓ Order of reaction may be fraction, zero or even negative. As for example, thermal decomposition of acetaldehyde,

 $CH_3CHO \rightarrow CH_4 + CO$

has order equal to 3/2.

Example of Reactions having Different Order:

- I. <u>Zero order reaction</u>: Dissociation of ammonia on tungsten or dissociation of *HI* on gold surface.
- II. <u>First order reaction</u>: Conversion of cyclopropane to propylene, substitution reaction of tertiary alkyl halide by nucleophile.
- III. Second order reaction: $H_2 + I_2 \rightarrow 2HI$, substitution reaction of primary alkyl halide by nucleophile.
- IV. <u>Fractional order reaction</u>: Thermal decomposition of acetaldehyde,

$$CH_3CHO \rightarrow CH_4 + CO$$

has order equal to $\frac{3}{2}$.

*<u>Elementary Reaction:</u>

A chemical reaction that takes place in one & only one step, i.e., all that occurs in a single step is called elementary reaction. For example –

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$
$$2HI \rightleftharpoons H_2 + I_2$$

Molecularity of an elementary reaction is the number of the reactant particles that are involved in each individual chemical event.

Molecularity of Elementary Reaction:

It is defined as the number of reactant particles (atoms, molecules, free radicals or ions) that are involved in each individual chemical event.

If a reaction takes place in a number of steps then slowest step is usually the rate determining step. Molecularity of the rate determining step is said to be the molecularity of the reaction.

- ✓ Molecularity of a reaction is purely theoretical concept.
- ✓ Molecularity of a reaction is necessarily a positive integer.

Elementary reactions with molecularity greater than three generally do not occur – justify.

The reactants are activated as a result of molecular collisions. But the collisions generally require high amount of energy because of inter – nuclear & inter – electronic repulsions. For a collision minimum two molecules are must. If the molecularity of an elementary step is 3, then three molecules must collide requiring high amount of energy. For a four – body collision, energy required will be still higher & therefore unknown. It is far easier to have two – body collisions & that will take place easily. Therefore, elementary reaction of molecularity 4 or greater is unknown. If molecularity becomes greater than 3, then such reaction involve two or more steps, such that each step has its own molecularity not greater than 3.

Difference Between Molecularity & Order:

The main differences are –

- I. Order is an experimental quantity whereas molecularity of a reaction is a purely theoretical concept.
- II. Order of a reaction is not necessarily integer. It may be fraction, zero or even negative. Whereas molecularity of a reaction is necessarily a positive integer.
- III. Order may change with physical condition, such as pressure, solvent etc whereas molecularity is an invariant number for a given chemical reaction.

Give an example of a chemical reaction where molecularity & order is different.

 $CH_3CHO \rightleftharpoons CH_4 + CO$

So, rate = $k[CH_3CHO]^{3/2}$. Here the order of the eaction is 1.5 but molecularity is 1. Hence order & molecularity is different.

Integrated Rate Laws:

 Zero Order Reaction: A reaction whose rate is independent of concentration is called a zero order reaction. Thus for a zero order reaction –

$$A \rightarrow pdt.$$

So, rate = $-\frac{d[A]}{dt} = k[A]^0 = k$

where [A] is the concentration of the reactant A at time t, thus -

$$\int_{a}^{[A[} d[A] = -k \int_{0}^{t} dt$$
$$Or, [A] - a = -kt$$
$$Or, [A] = a - kt$$

A zero order reaction will be completed when [A] = 0, so,

$$a - kt_{completion} = 0$$

Or, $t_{completion} = \left(\frac{a}{k}\right)$

<u>Graphical Representation</u>: If we plot [A] vs t, we get a straight line with slope = -k.

3

<u>Half – life period</u>: When $t = t_{\underline{1}}$, then, [A] = a/2, now –

$$\frac{a}{2} = a - kt_{\frac{1}{2}}$$

Or, $t_{\frac{1}{2}} = \left(\frac{a}{2k}\right)$, *i.e.*, $t_{1/2} \propto a$

Unit of rate constant: mol. L⁻¹sec⁻¹

Characteristics:

- I. Rate is independent of instantaneous concentration of the reactant.
- II. Unit of rate & rate constant are the same.
- III. Zero order reaction must be multistep in nature.
- IV. Zero order reaction can be completed in a finite time.
- V. Half life period is directly proportional to initial concentration of reactant.

Write down the unit of the rate constant of a zero order reaction.

$mol. L^{-1}sec^{-1}$

What do you mean by half-life period of a reaction?

The half-life of a reaction, $t_{1/2}$, is the amount of time needed for a reactant concentration to decrease by half compared to its initial concentration.

Zero order reaction is multistep — Explain.

If zero order reaction is single step then the reaction would be an elementary reaction & in that case order of the reaction would be same as molecularity. But molecularity of a reaction cannot be zero. So zero order reaction must be a multistep reaction. The reactant with respect to which the order becomes zero is involved in a step which is not the rate determining step (r.d.s.).

Does a zero order reaction go to completion?

Rate equation for a zero order reaction —

$$-\frac{dc}{dt} = kC^{0}$$

$$Or, \int dc = -\int kdt$$

$$Or, C = -kt + IC$$

$$at t = 0, C = C_{0}, then IC = C_{0}$$

$$So, C = C_{0} - kt$$

Hence, a zero order reaction will go to completion & time duration is $\frac{C_0}{\nu}$.

> For a reaction the plot of log $t_{1/2}$ versus log a turns out to be a straight line with positive slope and intercept, which makes an angle of 45° with the log a axis. What is the order of the reaction?

We know half - life period of a nth order reaction is given as -

$$t_{1/2} = \frac{k}{a^{n-1}}$$

Or, log $t_{1/2} = \log k + (1-n) \log a$

Slope of $\log t_{1/2} vs \log a = (1 - n)$. So we can write –

4

 $(1-n) = tan 45^0 = 1, \quad Or, \quad n = 0$

Hence the given reaction is a zero order reaction.

In a certain kinetic study, the plot of $\log t_{1/2} vs \log a$ was found to be a straight line with unit slope. State with reason the order of the reaction.

We know half - life period of a nth order reaction is given as -

$$t_{1/2} = \frac{\kappa}{a^{n-1}}$$

Or, log $t_{1/2} = \log k + (1-n) \log a$

Slope of $\log t_{1/2}$ $vs \log a = (1 - n)$. So we can write –

$$(1-n) = 1$$
$$Or, n = 0$$

Hence the given reaction is a zero order reaction.

 First Order Reaction: A first order reaction is one whose rate is linearly proportional to the instantaneous concentration of the reactant. Let us consider a first order reaction –

$$A \rightarrow B$$

Let initial concentration of reactant is $[A]_0 = a \& at an arbitrary time t$ it is [A] = a - x. Then the differential rate law is given as –

$$-\frac{d(a-x)}{dt} = k(a-x)$$
$$Or, \left(\frac{dx}{dt}\right) = k(a-x)$$
$$Or, \int_{0}^{x} \frac{dx}{(a-x)} = k \int_{0}^{t} dt$$
$$Or, \ln\left(\frac{a}{a-x}\right) = kt$$
$$Or, \log\left(\frac{a}{a-x}\right) = \frac{k}{2.303}t$$
$$Or, t = \frac{2.303}{k} \log\left(\frac{a}{a-x}\right)$$

<u>Graphical Representation</u>: If we plot $\log (a_a - x) vs t$, we get a straight line passing through the origin & slope = k/2.303.

5

<u>Half – life period</u>: When $t = t_{\frac{1}{2}}$, then, $x = \frac{a}{2}$, from above equation –

$$t_{\frac{1}{2}} = \frac{2.303}{k} \log\left(\frac{a}{a - \frac{a}{2}}\right) = \frac{1}{k} \ln 2 = \frac{0.693}{k}$$

So, half – life period is independent of initial concentration of reactant. Unit of rate constant: sec^{-1}

Characteristics:

- I. First order reaction never goes to completion.
- II. Half life period is independent of initial concentration of reactant.

First order reaction never proceeds to completion – justify or criticize. For first order reaction –

$$\frac{[A]}{[A]_0} = e^{-kt}$$

When reaction will be completed then [A] should be equal to zero & it will be possible only when $t = \infty$, so first order reaction never goes to completion.

Show for a first order reaction, the time required for 99.9% completion of the reaction is almost 10 times the time for 50% completion.

For a first order reaction,

$$t = \frac{1}{k} ln \frac{a}{a-x} = \frac{2.303}{k} log \frac{a}{a-0.999a}$$

$$Or, t = \frac{2.303}{k} log 10^3 = \frac{6.909}{k}$$

$$We \ know, t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$So, \frac{t}{t_{\frac{1}{2}}} = \frac{6.909}{0.693} \approx 10.$$

$$Hence, t = 10 \times t_{1/2} \ (proved)$$

Show that the time required for 75% completion of a first – order reaction is twice the time required for 50% completion of the reaction.

For a first order reaction,

$$t = \frac{1}{k} ln \frac{a}{a-x} = \frac{2.303}{k} log \frac{a}{a-0.75a}$$

$$Or, t = \frac{2.303}{k} log 4 = \frac{1.3865}{k}$$

$$We \ know, t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$So, \frac{t}{t_{\frac{1}{2}}} = \frac{1.3865}{0.693} \approx 2.$$

Hence, $t = 2 \times t_{1/2}$ (proved)

3. <u>Second Order Reaction</u>: Consider a second order reaction involving only one reactant, i.e.

$$A \rightarrow pdt$$
.

Let initial concentration of reactant is $[A]_0 = a$ & at an arbitrary time *t* it is [A] = a - x. Then the differential rate law is given as –

$$-\frac{d(a-x)}{dt} = k(a-x)^{2}$$
$$Or, \left(\frac{dx}{dt}\right) = k(a-x)^{2}$$
$$Or, \int_{0}^{x} \frac{dx}{(a-x)^{2}} = k \int_{0}^{t} k \, dt$$
$$Or, \left(\frac{1}{a-x}\right) - \frac{1}{a} = kt$$
$$Or, \frac{1}{a-x} = \frac{1}{a} + kt$$
$$Or, kt = \frac{x}{a(a-x)}$$
$$Or, t = \frac{1}{k} \times \frac{x}{a(a-x)}$$

<u>Graphical Representation</u>: If we plot 1/[R] *vs t*, we get a straight line with intercept = 1/a & *slope* = k.

<u>Half – life period</u>: When $t = t_{\frac{1}{2}}$, then, $x = \frac{a}{2}$, from above equation – <u>Half – life period</u>: When $t = t_{\frac{1}{2}}$, then, $x = \frac{a}{2}$, from above equation –

$$t_{\frac{1}{2}} = \frac{1}{k} \times \frac{\frac{a}{2}}{a \cdot \frac{a}{2}} = \frac{1}{ak}$$

Hence, half – life period is inversely proportional to initial concentration of reactant. <u>Unit of rate constant</u>: $mol^{-1}lit.sec^{-1}$

Characteristics:

- I. Second order reaction transfers to first order reaction when one of the reactant is present in large excess.
- II. Half life period of second order reaction is inversely proportional to initial concentration of reactant.

Chemical Kinetics (VJRC)

Write down the unit of rate constant of a 2nd order reaction.

$$mol^{-1}lit.sec^{-1}$$

Second order reaction never proceeds to completion – justify or criticize.

For a 2nd order reaction, $k = \frac{1}{t} \frac{x}{a(a-x)}$

So,
$$t = \frac{1}{k} \frac{x}{a(a-x)}$$

When $t = t_{completion}$, then $a = 0$,
So, $t_{completion} = \frac{1}{k} \cdot \frac{x}{0} = \infty$

So, 2nd order reaction never goes to completion.

For a second order reaction A —> products. Hence show that the time required for three – fourths of the reactant to decay (t_{3/4}) is equal to 3t_{1/2}.

For a second order reaction —

$$\frac{1}{a-x} = \frac{1}{a} + kt$$

$$Or, \frac{1}{a-\frac{3a}{4}} = \frac{1}{a} + kt_{\frac{3}{4}} (for\frac{3}{4} th of the reactant)$$

$$Or, \frac{1}{a} = \frac{1}{a} + kt_{\frac{3}{4}}$$

$$Or, kt_{\frac{3}{4}} = \frac{4}{a} - \frac{1}{a} = \frac{3}{a}$$

$$Or, t_{\frac{3}{4}} = 3 \times \frac{1}{ka} = 3t_{1/2} (we know for 2nd order reaction t_{\frac{1}{2}} = \frac{1}{ka})$$

$$Or, t_{\frac{3}{4}} = 3 \times t_{1/2} (proved)$$