Partial Differential Equation

Separation of Variables Technique

Laplace's Equation in 2 dimensions (Cartesian co-ordinates):

$$
\nabla^{2} \mathbf{V}(\mathbf{x}, \mathbf{y})=\partial^{2} \mathbf{V} / \partial \mathbf{x}^{2}+\partial^{2} \mathbf{V} / \partial \mathbf{y}^{2}=\mathbf{0}
$$

Assume: $\mathrm{V}(\mathrm{x}, \mathrm{y})$ is 'separable' in the product form : $\mathbf{V}(\mathbf{x}, \mathbf{y})=\mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{y})$. Subst. in the diff. eqn. : $d^{2} f / d x^{2} g(y)+f(x) d^{2} g / d y^{2}=0$.
Note that $f(x)$ and $g(y)$ are functions of single variables. So their derivatives are not partial, but ordinary derivatives. Divide both sides by V(x, y), i.e., $f(x) g(y)$..
$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})+\mathrm{g}^{\prime \prime}(\mathrm{y}) / \mathrm{g}(\mathrm{y})=0$
$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=-\mathrm{g}^{\prime \prime}(\mathrm{y}) / \mathrm{g}(\mathrm{y})$
Now, a function of ' x ' cannot be equal to a function of ' y ' for all values of x and y (they may, accidentally match at some particular pair of values of x and y), unless both are constant functions.
[Note that ' $\phi(\mathbf{x})=$ constant' is a perfectly valid function.] So, we conclude :
$\mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=-\mathrm{g}^{\prime \prime}(\mathrm{y}) / \mathrm{g}(\mathrm{y})=\mathrm{C}$, where ' C ' is called the 'separation constant'.
If we chose the separation constant to be $+v e$, we shall have exponential solutions for $f(x)$, but if we chose it to be -ve, we shall get sinusoidal (i.e., periodic) solutions. Suppose, we have the boundary conditions:
(i) $V(x, y)=0$ at $x=0$ for all values of y,
(ii) $V(x, y)=0$ at $x=a$ for all values of y.

This requires the solutions to repeat their values at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$. So, we choose :
$\mathbf{C}=-\mathbf{k}^{2}$ (i.e., -ve).
$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=-\mathrm{k}^{2}, \mathrm{~g}^{\prime \prime}(\mathrm{y}) / \mathrm{g}(\mathrm{y})=+\mathrm{k}^{2}$
$\Rightarrow f(x)=A \cos k x+B \sin k x$ and $g(y)=C e^{k y}+D e^{-k y}$
$\Rightarrow \mathbf{V}(\mathbf{x}, \mathbf{y})=[\mathrm{A} \cos \mathrm{kx}+\mathrm{B} \sin \mathrm{kx}]\left[\mathrm{C} \mathrm{e}^{\mathrm{ky}}+\mathrm{D} \mathrm{e}^{-\mathrm{ky}}\right]$
This is one solution for a particular value of ' k ', but different values of ' k ' will generate different solutions. The general solution is obtained by superposing them as :

$$
V(x, y)=\Sigma_{k}\left[A_{k} \cos k x+B_{k} \sin k x\right]\left[C_{k} e^{k y}+D_{k} e^{-k y}\right]
$$

Note that the constants ' A_{k} ', ' B_{k} ', etc., may differ for different values of ' k '.
At $\mathrm{x}=0, \mathrm{~V}=0$ for all values of $\mathrm{y} \Rightarrow 0=\sum_{\mathrm{k}} \mathrm{A}_{\mathrm{k}}\left[\mathrm{C}_{\mathrm{k}} \mathrm{e}^{\mathrm{ky}}+\mathrm{D}_{\mathrm{k}} \mathrm{e}^{-\mathrm{ky}}\right]$
$\Rightarrow \mathrm{A}_{\mathrm{k}}=0$
$\Rightarrow \mathrm{V}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{k}} \mathrm{B}_{\mathrm{k}} \sin \mathrm{kx}\left[\mathrm{C}_{\mathrm{k}} \mathrm{e}^{\mathrm{ky}}+\mathrm{D}_{\mathrm{k}} \mathrm{e}^{-\mathrm{ky}}\right]$
At $x=a, V=0$ for all values of $y \Rightarrow$ either $B_{k}=0$, or, $\sin k a=0$,
but both A_{k} and $\mathrm{B}_{\mathrm{k}}=0$ will lead to the 'trivial solution' $\mathrm{V}(\mathrm{x}, \mathrm{y})=0$ for all x and y .
So, we turn towards the other choice : $\sin \mathrm{ka}=0 \Rightarrow \mathrm{ka}=\mathrm{n} \pi$, or, $\mathbf{k}=\mathbf{n} \pi / \mathbf{a}$.
We see, how the boundary condition can restrict the possible choices for ' k '.
Now, $V(x, y)=\sum_{n} B_{n} \sin (n \pi x / a)\left[C_{n} e^{(n \pi y / a)}+D_{n} e^{-(n \pi y / a)}\right]$.
We have replaced ' k ' by $\left(n \pi / a\right.$) and re-parametrized the constants ' A_{k} ', ' B_{k} ', etc., as ' A_{n} ', ' B_{n} ', etc. We may absorb the const. B_{n} in C_{n} and D_{n}, calling: $\mathrm{B}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}$ ' and $\mathrm{B}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=\mathrm{D}_{\mathrm{n}}$, so that :

$$
\mathbf{V}(\mathbf{x}, \mathbf{y})=\Sigma_{\mathbf{n}} \sin (\mathbf{n} \pi \mathbf{x} / \mathbf{a})\left[\mathbf{C}_{\mathbf{n}} \mathbf{e}^{(\mathbf{n} \pi \mathrm{y} / \mathbf{a})}+\mathbf{D}_{\mathbf{n}}{ }^{\prime} \mathbf{e}^{-(\mathbf{n} \pi y / \mathbf{a})}\right] .
$$

Suppose, we have another boundary condition : (iii) $V(x, y)=0$ at $y=0$ for all values of x.

This will imply : $0=\sum_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{a})\left[\mathrm{C}_{\mathrm{n}}{ }^{\prime}+\mathrm{D}_{\mathrm{n}}{ }^{\prime}\right] \Rightarrow \mathrm{D}_{\mathrm{n}}{ }^{\prime}=-\mathrm{C}_{\mathrm{n}}{ }^{\prime}$
$\Rightarrow \mathbf{V}(\mathbf{x}, \mathbf{y})=\Sigma_{\mathbf{n}} \sin (\mathbf{n} \pi \mathbf{x} / \mathbf{a}) \times \mathbf{C}_{\mathbf{n}}{ }^{\prime}\left[\mathrm{e}^{(\mathbf{n} \pi / \mathrm{y})}-\mathrm{e}^{-(\mathbf{n} \pi / \mathrm{y})}\right]$ $=\Sigma_{\mathbf{n}} \mathbf{2} \mathrm{C}_{\mathbf{n}}{ }^{\prime} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{a}) \sinh (\mathrm{n} \pi \mathrm{y} / \mathrm{a})$,
where $\sinh (\theta)$ is dedfined as : $\left[\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right] / 2$ and $\cosh (\theta)$ as : $\left[\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}\right] / 2$.
We shall require another (fourth) boundary cond. to determine the const. $\mathrm{C}_{\mathrm{n}}{ }^{\prime}$.

