LECTURE-4



Lattice Planes in a
Cubic System

Some of the lattice planes in the cubic crystals are shown in Fig. 3.9.3.
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. The distailces between planes of a crystal can be determined with the help

of X-ray diffraction measurements. These can, in turn, be used to determine the

system to which the crystal belongs.



A Few Typical
Examples

General Formula

INTERPLANAR DISTANCES FOR CUBIC SYSTEMS

(1) (100) planes Distahce between these planes is equal to the length a of the

side of a cube, i.e. d;jp = a. _
(2) (200) planes Distance between these planes is equal to the half length
al/2 of the side of a cube, 1.e. dypq = a/2. |

(3) (110) planes Spacing between these planes is one-half of the diagonal of

the square base of the cube, 1.e. d,y5n = (,/a2 +a2)/2=a/\/§

(4) (111) planes The entire cross diagonal d of a cube spans- three (111)
planes. Thus, the distance between the two of each of these planes is d/3. Now,

d=\/a2+a2+a2 =\/§a

J3a a

Therefore d,,; = =
3 43

(5) (222) planes These planes are in between (111) planes. Thus, the distance
between any two such planes is
dyzp = 4 = -2
| 2 23 -

General formula for the interplanar spacing in the cubic system (orthogonal
axes) 18

a
\/h2+k2+12 (3.10.1)

where hkl are Miller indices of the planes and a is edge length of the cube.
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Utility of Interplanar
Distances

Geometrical Method

It is obvious that if one had a method for determining d,,,,; experimentally, the

constancy of the quantity dkm\/ h? + k% + 1> will not only determine the value

of a but will also indicate to what cubic system the given crystal belongs.
The ratios of interplanar distances of different faces in the three cubic
lattices (Fig. 3.9.3) are:

Simple :

cubic lattice ' dyoo: d110: 4111 = ——\/13 % i.e. L0 7-0577
""Facfe-centr.‘ed . 1 1 1 )

cubic lattice ooy Ao dy = 5° > : N h ie 1:0.707:1.154

Bod;y-centred . . 1 1 1" ) )

cubic lattice oo d110- Ao = 5 e n L& 1:1.414:0.577

The general formula for the interplanar spabing in a system of orthogonal axes can
be derived geometrically.” As stated earlier, the Miller indices define the set of
parallel planes, one of which passes through the origin. Thus, if a perpendicular

is drawn from the origin to the nearest plane of Miller indices (hkl), then this
perpendicular distance, represented as d,,;,, will be equal to the interplanar

~ spacing between planes of Miller indices (hkl) as shown by OD in Fig. 3.10.1.



Fig. 3.10.1 . Interplanar
distance of the planes

If o, [B. and p are the angles which this perpendicular makes with the three axes,
then '

d,,H:OAoosa—-:[%]cosa, d,,kl—OBcosB [b)cosﬁ
and d,,,d=OC‘,co‘sy=(£;—jcosy
| k
or COSs O = v PR cos B = | — |dprz> and COs G = P
Now since cos o cos G and cos p are the directuon cosines of the pexpendlcular
line, therefore

cosZoc +cos? 8 +cosZy =1 I



Substituting their values in terms of d;,,;,. we have

2 2 2
() - (5T e (2] a8 =

OROMO
or =
dhkl
For a cubic system a = = e, we have
1 ___l*.'z"z—f-kz+l2 a= " _ds o a
. 2 R — —
it a JEZE + 2+ 12
For a tetragonal systerm, aca = 6 = c, we have
L. & w0
dfkl a” "

For an orithorbombic svystermnm o = £ = c, we have

1 2= K== Z=
dl%kl .«




Characteristics of
Waves

Fig. 3.11.1 Wave
propagation

Electromagnetic radiation consists of waves that are propagated through space
with the velocity of light. It can be characterized by either frequency or
wavelength. The former gives the number of cycles through which the wave

- moves in one second and the latter gives the distance between two points on

the wave which have gone through a complete cycle. These two, i.e. frequency
and wavelength, are related by the expression

-

vV = < g
A
Associated with the wave is the amplitude which is the displacement of
thc wavc in a dircction pcrpendicular to the dircction of its propagation. Thce

wave nature can be represented by either a sine wave or a cosine wave as shown
in Fig. 3.11.1.
' .I
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Constructive and Two waves coming from two different sources having the same wavelength and

Destruciive same amplitude reinforce each other when their maxima and minima coincide.

Interferences On the other hand, they will interfere and exactuy cancel each other when their
maxima and minima do not coincide. The former is known as coznstructive
interference and the latter as destructive interferennce. The amplitude of the
resultant wave at any point is obtained by the algebraic sum of the amplitudes
of the two individual waves at the point.

This interference phenomenon forms the basis of the diffraction of light
by a diffraction grating. A typical diffraction grating consists of a transparent
medium (such as glass) on which are ruled a large number of very fine, equidistant,
parallel, opague lines. When light from a monochromatic source is incident
perpendicular on the grating, all the clear spaces will act as secondary sources
of light and, therefore, will emit light waves in all directions radially outward.

- The wavelengths and frequencies of the diffracted light waves are the same as
that of the incident light waves. The waves from two apertures will cross at some
point beyond the grating. Tf a screen is placed at this point, a series of bright
and dark spots will be observed on the screen. A bright spot is obtained where
the waves from adjacent apertures in the grating reinforce one another. A dark

- spot arises from the destructive mterference of waves at the ponnt- Figure 3.11.2
shows the 1nterference ~of waves from two ad_]acent apertures of a gratmg

=
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Condition for Bright A bright spot is observed when both the waves are in phase. The essential

Spot condition for this to be observed is that the exitra distance travelled by one of
the waves is an integral multiple of wavelength.
Thus FG = nA =6 AN e Y

From Fig. 3.11.2, it follows that
FG = d sin @
Equating these two, we get
n?\.zdsine n=0,1,2,..
A grating with 4,000 lines cm ! is illuminated with Hg green line having a wavelength equal
to 546 nm. At what angle will the first and second order diffraction maxima occur?

Y |
- 4000 cm 1t

Therefore, angle of first order diffra_ct{on maxirna is

=253 10 fcm =255 10" ° m-

The grating spacing, d =

: -9
sin €, = S e LY CSAG 1_2 D) O Sisd
o 2.5=x<10 mn .
or - e, —12.62° R

T —

Angle of second order diffraction maxima is

; o
7 e B N 1)

or e, — 25 9° _



Calculate the angle at which the first order maxima occurs if an electromagnetic wave of
10 nm is exposed to the above grating.

The angle at which first order maxima is observed is given by

(1) (10><10-9 m)

sin @ = =4.0x107
PAST 10’6
or g.=023°
Comment The calculated angle of first order maxima in Examplé 3.11.2 is too close to the

intense beam which occurs at 6 = 0 and thus cannot be determined accurately.
In order to obtain measurable separation of maxima, it is essentidl that the
- spacing between lines of grating should be approximately equal to the wavelength
of the employed electromagnetic/ radiation.



LLaue Method

'DIFFFiA’CTION OF X-RAYS BY CRYSTALS

In 1912, Max von Laiie predicted that since the distances between particles in
a crystal are of the same order of magnitude (= 10°® cm) as the wave length of
X-rays, the former could be used as a 3-dimensional diffraction grating and thus
if a beam of non-homogeneous X-rays were passed through a crystal, a diffraction
pattern would be observed. The experiments carried out on various substances
verified Lailie’s prediction. The diffraction pattern can be recorded by placing
a photographic plate behind the crystal as shown in Fig. 3.12.1. On developing
the film, one observes a series of spots arranged in some symmetrical way around
the intense central undiffracted beam. The arrangement of these spots (known
as lLaiie spots) is highly characteristic of the structural arrangement of the
crystal. From the position of Laiie spots, it is possible to calculate the size and
shape of the unit cell. However, the actual analysis of the Laiie diffraction
pattem is hlghly complicated and difficult.




Crystal asa
Reﬂectlon Gratmg

BRAGG’S EQUATION

B.H. Bragg and W L Bragg were of thc oplmon that since a crystal is composcd
of a series of equally spaced atomic planes, it may be employed not only as a
transmission gratmg as in the Laiie method, but also as a reflection grating.
When X-rays. are incident on a crystal face, they penetrate into the crystal and
suffer reflections on stnkmg the atoms in successive planes as shown in Fig. 3.13.1.
If the reflected waves from successive layers are out of phase, then due to the
destructive interference, no diffraction will be observed. If, however, the reflected
waves are in phase, then due to the constructive interference, a diffraction spot
will be observed. The condmon for a reflection to glve constructive 1nterferencc
can be derived from Fig. 3.13.1 as follows. : s

IL.et © be the incident angle of monochromatic X-rays of wavelength A w:th the
parallel equidistant planes of atoms with interplanar spacing equal to d. The
waves are in phase before striking the planes. Thwo such waves labelled as -wave
1 and~wave 2 are shown in Fig. 3.13.1. After the reflection, the two waves will
be in phase provided the extra distance travelled by wave 2 is-an_ integral
multiple of wavelength A. This extra distance can be obtained by dropping
perpendiculars BG and BH from B on to wave 2. It is obvious from
Fig. 3.13.1. that _

AB = IDG; BC = HFE; =B = d aina &
Now the extra distance travelled by wave 2 is given as

DEF —- ABC=(_0OG+GE+EH +HPF —(AB +— BO)
= GE + EH ’
= 2d sin O

Thus, in order to have wave 1 and wave 2 in phase, we  must have

2d sin 8 = nA, - n=1,2,3, ... - = (3.13:1)



Fig. 3.13.1 Reflection of
X-rays from the planes of
a crystal s

Equation (3.13.1) is known as the Bragg’s equation: The constant n gives
the order of reflection and is equal to the number of wavelengths in the path
difference between waves reflected by adjacent planes. Thus, n can take only
integral values subject to the limitation that sin € cannot be greater than one.
For fixed values of A and d, we can have more than one reflection at angles
0,, 6,, ... corresponding to the values of n equal to 1, 2, 3,..., respectively. From
Eq. (3.13.1), it can be concluded that the higher order reﬂectmns will occur at
larger values of sin 8 and hence at larger angles. Experimentally, it is found that
the lowcr order reflections arc the most intense and the intcnsitics of higher
order reflections decreases rapidly.



Alternative Way of
Writing Bragg’s

Equation

While dealing with- X-ray diffraction, it is more convenient to express higher
order reflections in terms of the first order reflection from planes of higher Miller

indices (Akl). For examp]e a second order reflection from (111) planes may be
considered equivalent to the first order reflection from (222) planes. Similarly
a third order reflection from (111) planes may be considered as the first order
reflection from (333) planes. This fact can be introduced into the Bragg equation
nA = 2d sin @ by rewriting it as '

A =2[g—)sin9 = 2 d;;; SIn 6
\n

where d,,, is the perpendicular distance between adjacent planes having the
indices (AkD).

Experimental Set-up

The reflection angles and the intensities of the reflected beams corresponding
to these angles can be determined with the help of Bragg X-ray spectrometer,
a schematic diagram of which is shown in Fig. 3.13.2. This method consists of
the following steps.

(1) The X-rays are generated in tube A by bombarding cathode rays on
a suitable target B. The most commonly used target metals and their characteristic
wavelengths are copper 154.1 pm, molybdenum 70.9 pm and chromium
229.0 pm.

(2) The generated X-rays are passed through a series of slits and filters (C,
D, etc.) in order to get a sharp monochromatic beam. It is then directed to strike
the face of a crystal placed on a graduated turntable F. The latter may be rotated
to any desired angle of incidence.

(3) The reflected beam is passed into an ionization chamber G containing
SO,. The reflected X-rays ionize the SO, gas in proportion to their intensity. The
extent of ionization and hence the intensity of reflection can be determined with
the help of an electrometer.

(4) The experiment is repeated at various incident angles of X-rays and
the angle at which maximum reflection occurs is determined.



Fig. 3.13.2 Bragg X-ray
spectrometer
X-ray Diffraction
Pattern

Fig. 3.13.3 X-ray
diffraction pattern (only
schematic) for a crystal
of tungsten

The X-ray diffraction pattern (only schematic) for a crystal of tungsten is shown
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The wvariation in intensity of the diffracted beam for different sets of planes
! - - - - - - .
is due to the variation in density of atoms in these planes. The planes of high

atomic denﬁlty produce better scattering of X-rays which gives a more intense
beam . \



When a certain crystal was studied by the Bragg technique using X-rays of wavelength
229 pm, an X-ray reflection was observed at an angle of 23”20". (a) What is the

corresponding interplanar spacing? (b) When another X-ray source was used, a reflection
was observed at 15° 26”. What was the wavelength of these X-rays?

(aa) Gaiven that

A =229 pm  and @ = 23° 20
Substituting these in the Bragg equation, we have
i = = S N 299 pm 299 pm
e T 2 sin © 2 x sin (23°20") 2 < 0.396

= 289.2 pm X
(b) Now @ = 15°267, thus }

A =2d;p;8in @ = 2(289.2 pm) sin (15°26")
— 2(289.2 pm) (0.226 2) = 153.9 pm




