
Bessel Equation  

 

Bessel functions are named after the German astronomer Friedrich Wilhelm Bessel, who 

studied them in 1817. The following differential equation is known as the Bessel Differential 

Equation :  

                                 x2 d2y/dx2 + x dy/dx + (x2 – 2) y = 0  ----- (1)          

Dividing by x2, the equation may be re-written as : 

                      d2y/dx2 + (1/x) dy/dx + (1 – 2/x2) y = 0,  ---- (2) 

which shows that the coefficient of dy/dx has a simple pole and that of y has a second order pole 

at x = 0. This is a regular singular point, hence we can apply Frobenius’ method (named after 

the German mathematician Ferdinand Georg Frobenius) to solve this differential equation 

about x = 0. 

So, we can expect a solution of the form :   

           y = Cn x
n + s    dy/dx =  (n + s) Cn x

n + s – 1  

                                                     d2y/dx2 =  (n + s) (n + s – 1) Cn x
n + s – 2 

Substituting in the differential equation (2) :   

 (n + s) (n + s – 1) Cn x
n + s – 2  +  (n + s) Cn x

n + s – 2  + Cn x
n + s  – 2 Cn x

n + s – 2   =  0    

   [(n + s)2 – 2] Cn x
n + s – 2  + Cn x

n + s  =  0   ----- (3)          

Since this is an identity, the coefficient of each power of x must separately vanish.  

Equating the coefficient of the lowest power of x, i.e., xs – 2   0, we have :                                         

                                    [s2 – 2] C0  =  0    s =  , or,  C0 = 0    ----- (4)   

Similarly, equating the coefficient of  xs – 1   0 , we have :    

                                   [(s + 1)2 – 2] C1 =  0    s =  – 1, or,  C1 = 0    ----- (5)      

For s = , 

our eqn. (3) reduces to :  

                                        [(n + )2 – 2] Cn x
n + – 2  + Cn x

n +   =  0    

                                    n (n +2) Cn x
n + – 2  =  –  Cn x

n +      ----- (6)                  

Equating the coefficient of xm +    0 , we have :  

                       (m + 2) (m + 2 + 2) Cm + 2  =  –  Cm   

                    Cm + 2  =  – Cm / (m + 2) (m + 2 + 2)  ----- (7)        

Eqn. (7) is known as the recursion relation, which allows us to express C2, C4, etc., in terms  

of C0. Thus, we obtain :  

                       C2  =  – C0 / 2 (2 + 2)  = – C0 / [2
2 (1 + )],   

                       C4  =  – C2 / 4 (4 + 2) = – C2 / [2
2  2  (2 + )] 

                            =  C0 / [2
4  1  2  (1 + ) (2 + )] 

                       C6  =  – C4 / 6 (6 + 2) =  – C4 / [2
2  3  (3 + )] 

                           =  –  C0 / [2
6  1  2  3  (1 + ) (2 + ) (3 + )],  etc. 

                       C2n  =  (–)n  C0 / [2
2n  n!  (1 + ) (2 + )    (n + )],   

For integral values of  1/ [(1 + ) (2 + )    (n + )]  

                                       = 1 2      / [1 2       (1 + ) (2 + )    (n + )]  

                                       = n  

                            C2n  =  (–)n   ! C0 / 2
2n  n! (n + ) !   



 

 

For non-integral values of 

We know that :  (n +  + 1) = (n + )(n + ) =  (n + )(n +  – 1) (n + – 1)  

                                               = (n + )(n +  – 1)     (2 + )  (1 + ) (+ 1) 

            (1 + ) (2 + )    (n + ) =  (n +  + 1)/ ( + 1) 

           C2n  =  (–)n  ( + 1) C0 / 2
2n  n! (n +  + 1) 

So, the solution for s =  is :  

               y1 = C2n x
2n + = x C2n x

2n = C0 x  ( (–)n  [1 /n! (n + )] (x/2)2n 

The constant (may be absorbed in C0, so that y1 may be written as :  

                                y1 = C0 x  (–)n [1 /n! (n + )] (x/2)2n 

Another solution may be obtained with the choice s = – 

Just replacing ‘’ by ‘– ’, we get 

                               y2 = C0 x
–   (–)n [1 /n! (n – )] (x/2)2n 

and the general solution may be written as y = y1 + y2  

Generating Function 

 The generating function for Bessel function is : G(x, t) = ex/2 (t – 1/t)
,  

which is expanded as : n tn Jn(x), where ‘n’ runs from  –  to + .  

G(x, t) may be written as :  ext/2 e– x/2t = r (xt/2)r /r!  s (– x/2t)s/s! , 

where both indices ‘r’ and  ‘s’ runs from  0 to + . 

So, G(x, t) = r s (x/2)r+s  (t)r – s  (– 1)s/r!s! 

            Put : r – s = n    r + s = n + 2s 

  G(x, t) = n s (x/2)n + 2s  (t)n  (– 1)s/(n + s) ! s!   

=  n (t)n  (x/2)n  s (x/2)2s  (– 1)s/(n + s) ! s!    

Note that ‘n’ runs from –  to + , 

By definition, this equals : n tn Jn(x). So, equating the coefficient of tn on both sides,  

Jn(x)  =  (x/2)n  s (x/2)2s  (– 1)s/(n + s) ! s! , 

which clearly agrees with the expression obtained from solving the differential equation. 

 

Recursion Relations 

                                       

G(x, t)  =  ex/2 (t – 1/t)  = n tn Jn(x)  
Differentiating both the expressions partially w.r.t. ‘x’ :  

½ (t – 1/t) ex/2 (t – 1/t)  =  n tn Jn(x) 

Replacing the expression  [ex/2 (t – 1/t)] on the LHS again by  n tn Jn(x) :  

½ (t – 1/t) n tn Jn(x)  =  n tn Jn(x) 

  ½ n tn + 1 Jn(x)  –  ½ n tn – 1 Jn(x)  =  n tn Jn(x) 



Equating the coefficient of tm on both sides : 

 Jm – 1 (x) – Jm + 1 (x)]  =  Jm(x)  ---- (1) 

Starting again from the definition  :  G(x, t)  =  ex/2 (t – 1/t)  = n tn Jn(x),  
differentiating both the expressions partially w.r.t. ‘t’ :  

½ (1 + 1/t2) ex/2 (t – 1/t)  =  n ntn – 1 Jn(x) 

Replacing the expression  [ex/2 (t – 1/t)] on the LHS again by  n tn Jn(x) :  

(x/2) (1 + 1/t2) n tn Jn(x)  =  n ntn – 1 Jn(x) 

        (x/2) n [tn Jn(x) + tn – 2 Jn(x)]  =  n ntn – 1 Jn(x) 

Equating the coefficient of tm – 1 on both sides : 

(x/2) [Jm – 1 (x) + Jm + 1 (x)]  =  mJm(x) 

        [Jm – 1 (x) + Jm + 1 (x)]  =  (2m/x)Jm(x)  ---- (2) 

  One can also generate the following relations from (1) and (2) : 

          d/dx {xn Jn(x)} = nxn – 1 Jn(x) + xn Jn(x) 

= xn [(n/x) Jn(x) + Jn(x)] 

=xn [ {Jn – 1 (x) + Jn + 1 (x)}/2 + {Jn – 1 (x) – Jn + 1 (x)}/2 ]     

                                     = xn Jn – 1 (x)  ---- (3) 

       d/dx {x– n  Jn(x)} =  – n x– n – 1 Jn(x) + x– n  Jn(x)   

                                     = x– n [– (n/x) Jn(x) + Jn(x)] 

                                     = x– n [– {Jn – 1 (x) + Jn + 1 (x)}/2 + Jn – 1 (x) – Jn + 1 (x)}/2 ]   

                                     =  – x– n Jn + 1 (x)  ---- (4)   


