Bessel Equation

Bessel functions are named after the German astronomer Friedrich Wilhelm Bessel, who studied them in 1817. The following differential equation is known as the Bessel Differential Equation :

$$
\begin{equation*}
x^{2} d^{2} y / d x^{2}+x d y / d x+\left(x^{2}-\alpha^{2}\right) y=0 \tag{1}
\end{equation*}
$$

Dividing by x^{2}, the equation may be re-written as :

$$
\begin{equation*}
d^{2} y / d x^{2}+(1 / x) d y / d x+\left(1-\alpha^{2} / x^{2}\right) y=0,--- \tag{2}
\end{equation*}
$$

which shows that the coefficient of dy/dx has a simple pole and that of y has a second order pole at $\mathbf{x}=\mathbf{0}$. This is a regular singular point, hence we can apply Frobenius' method (named after the German mathematician Ferdinand Georg Frobenius) to solve this differential equation about $\mathrm{x}=0$.
So, we can expect a solution of the form :

$$
\begin{aligned}
y=\Sigma C_{n} x^{n+s} & \Rightarrow d y / d x=\Sigma(n+s) C_{n} x^{n+s-1} \\
& \Rightarrow d^{2} y / d x^{2}=\Sigma(n+s)(n+s-1) C_{n} x^{n+s-2}
\end{aligned}
$$

Substituting in the differential equation (2) :

$$
\begin{align*}
& \Sigma(\mathrm{n}+\mathrm{s})(\mathrm{n}+\mathrm{s}-1) \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}-2}+\Sigma(\mathrm{n}+\mathrm{s}) \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}-2}+\Sigma \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}}-\alpha^{2} \Sigma \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}-2}=0 \\
& \Rightarrow \Sigma\left[(\mathrm{n}+\mathrm{s})^{2}-\alpha^{2}\right] \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}-2}+\Sigma \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\mathrm{s}}=0-\cdots--(3) \tag{3}
\end{align*}
$$

Since this is an identity, the coefficient of each power of x must separately vanish.

Equating the coefficient of the lowest power of x, i.e., $x^{s-2} \rightarrow 0$, we have :

$$
\begin{equation*}
\Rightarrow\left[s^{2}-\alpha^{2}\right] \mathrm{C}_{0}=0 \Rightarrow \mathrm{~s}= \pm \alpha, \text { or, } \mathrm{C}_{0}=0 \tag{4}
\end{equation*}
$$

Similarly, equating the coefficient of $\mathrm{x}^{\mathrm{s}-1} \rightarrow 0$, we have :

$$
\begin{equation*}
\Rightarrow\left[(\mathrm{s}+1)^{2}-\alpha^{2}\right] \mathrm{C}_{1}=0 \Rightarrow \mathrm{~s}= \pm \alpha-1, \text { or, } \mathrm{C}_{1}=0 \tag{5}
\end{equation*}
$$

For $\mathrm{s}=\alpha$,

our eqn. (3) reduces to :

$$
\begin{align*}
& \Sigma\left[(\mathrm{n}+\alpha)^{2}-\alpha^{2}\right] \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\alpha-2}+\Sigma \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\alpha}=0 \\
\Rightarrow & \Sigma \mathrm{n}(\mathrm{n}+2 \alpha) \mathrm{C}_{\underline{n}} \mathrm{x}^{\mathrm{n}+\alpha-2}=-\Sigma \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}+\alpha}-\cdots--(\tag{6}
\end{align*}
$$

Equating the coefficient of $\mathrm{x}^{\mathrm{m}+\alpha} \rightarrow 0$, we have :

$$
\begin{align*}
& (\mathrm{m}+2)(\mathrm{m}+2+2 \alpha) \mathrm{C}_{\mathrm{m}+2}=-\mathrm{C}_{\mathrm{m}} \\
\Rightarrow & \mathbf{C}_{\mathbf{m}+\mathbf{2}}=-\mathbf{C}_{\mathrm{m}} /(\mathbf{m}+\mathbf{2})(\mathbf{m}+\mathbf{2}+\mathbf{2 \alpha}) \tag{7}
\end{align*}
$$

Eqn. (7) is known as the recursion relation, which allows us to express $\mathrm{C}_{2}, \mathrm{C}_{4}$, etc., in terms of C_{0}. Thus, we obtain :

$$
\begin{aligned}
\mathrm{C}_{2} & =-\mathrm{C}_{0} / 2(2+2 \alpha)=-\mathrm{C}_{0} /\left[2^{2}(1+\alpha)\right], \\
\mathrm{C}_{4} & =-\mathrm{C}_{2} / 4(4+2 \alpha)=-\mathrm{C}_{2} /\left[2^{2} \times 2 \times(2+\alpha)\right] \\
& =\mathrm{C}_{0} /\left[2^{4} \times 1 \times 2 \times(1+\alpha)(2+\alpha)\right] \\
\mathrm{C}_{6} & =-\mathrm{C}_{4} / 6(6+2 \alpha)=-\mathrm{C}_{4} /\left[2^{2} \times 3 \times(3+\alpha)\right] \\
& =-\mathrm{C}_{0} /\left[2^{6} \times 1 \times 2 \times 3 \times(1+\alpha)(2+\alpha)(3+\alpha)\right], \text { etc. } \\
\mathbf{C}_{2 \mathrm{n}} & =(-)^{\mathbf{n}} \mathrm{C}_{0} /\left[2^{2 \mathrm{n}} \times \mathbf{n}!\times(1+\alpha)(2+\alpha) \cdots(\mathbf{n}+\alpha)\right],
\end{aligned}
$$

For integral values of $\alpha: 1 /[(1+\alpha)(2+\alpha) \cdots(n+\alpha)]$

$$
\begin{aligned}
& =1 \times 2 \times \cdots \alpha /[1 \times 2 \times \cdots \alpha \times(1+\alpha)(2+\alpha) \cdots(n+\alpha)] \\
& =\alpha!/(n+\alpha)! \\
\Rightarrow \mathbf{C}_{2 n} & =(-)^{\mathbf{n}} \alpha!\mathbf{C}_{0} / \mathbf{2}^{\mathbf{2 n}} \times \mathbf{n}!(\mathbf{n}+\alpha)!
\end{aligned}
$$

For non-integral values of α :

$$
\left.\begin{array}{l}
\text { We know that : } \Gamma(\mathrm{n}+\alpha+1)=(\mathrm{n}+\alpha) \Gamma(\mathrm{n}+\alpha)=(\mathrm{n}+\alpha)(\mathrm{n}+\alpha-1) \Gamma(\mathrm{n}+\alpha-1) \\
\\
=(\mathrm{n}+\alpha)(\mathrm{n}+\alpha-1) \cdots(2+\alpha)(1+\alpha) \Gamma(\alpha+1) \\
\Rightarrow(1+\alpha)(2+\alpha) \cdots(\mathrm{n}+\alpha)
\end{array}\right) \Gamma(\mathrm{n}+\alpha+1) / \Gamma(\alpha+1) .
$$

So, the solution for $\mathbf{s}=\alpha$ is :

$$
\mathrm{y}_{1}=\Sigma \mathrm{C}_{2 n} \mathrm{x}^{2 \mathrm{n}+\alpha}=\mathrm{x}^{\alpha} \Sigma \mathrm{C}_{2 \mathrm{n}} \mathrm{x}^{2 \mathrm{n}}=\mathrm{C}_{0} \mathrm{x}^{\alpha} \Gamma(\alpha+1) \Sigma(-)^{\mathrm{n}}[1 / \mathrm{n}!\Gamma(\mathrm{n}+\alpha+1)](\mathrm{x} / 2)^{2 \mathrm{n}}
$$

The constant $\Gamma(\alpha+1)$ may be absorbed in C_{0}, so that y_{1} may be written as :

$$
\mathrm{y}_{1}=\mathrm{C}_{0}{ }^{\prime} \mathrm{x}^{\alpha} \Sigma(-)^{\mathrm{n}}[1 / \mathrm{n}!\Gamma(\mathrm{n}+\alpha+1)](\mathrm{x} / 2)^{2 \mathrm{n}}
$$

Another solution may be obtained with the choice $\mathbf{s}=-\boldsymbol{\alpha}$:
Just replacing ' α ' by ' $-\alpha$ ', we get

$$
\mathbf{y}_{2}=\mathrm{C}_{0}{ }^{\prime \prime} \mathbf{x}^{-\alpha} \Sigma(-)^{\mathrm{n}}[1 / \mathrm{n}!\Gamma(\mathrm{n}-\alpha+1)](\mathbf{x} / 2)^{2 \mathrm{n}}
$$

and the general solution may be written as $y=y_{1}+y_{2}$

Generating Function

The generating function for Bessel function is : $G(x, t)=\mathbf{e}^{\mathbf{x} / \mathbf{2}(\mathbf{t}-\mathbf{1} / \mathbf{t})}$,
which is expanded as : $\boldsymbol{\Sigma}_{\mathbf{n}} \mathbf{t}^{\mathbf{n}} \mathbf{J}_{\mathbf{n}}(\mathbf{x})$, where ' n ' runs from $-\infty$ to $+\infty$.
$\mathrm{G}(\mathrm{x}, \mathrm{t})$ may be written as : $\mathrm{e}^{\mathrm{xt} / 2} \mathrm{e}^{-\mathrm{x} / 2 \mathrm{t}}=\Sigma_{\mathrm{r}}(\mathrm{xt} / 2)^{\mathrm{r}} / \mathrm{r}!\times \Sigma_{\mathrm{s}}(-\mathrm{x} / 2 \mathrm{t})^{\mathrm{s}} / \mathrm{s}!$, where both indices ' r ' and ' s ' runs from $\mathbf{0}$ to $+\infty$.
So, $\mathrm{G}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{r}} \sum_{\mathrm{S}}(\mathrm{x} / 2)^{\mathrm{r}+\mathrm{s}} \times(\mathrm{t})^{\mathrm{r}-\mathrm{s}} \times(-1)^{\mathrm{s}} / \mathrm{r}!\mathrm{s}$!
Put: $\mathrm{r}-\mathrm{s}=\mathrm{n} \Rightarrow \mathrm{r}+\mathrm{s}=\mathrm{n}+2 \mathrm{~s}$
$\Rightarrow \mathrm{G}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}} \sum_{\mathrm{s}}(\mathrm{x} / 2)^{\mathrm{n}+2 \mathrm{~s}} \times(\mathrm{t})^{\mathrm{n}} \times(-1)^{\mathrm{s}} /(\mathrm{n}+\mathrm{s})!\mathrm{s}!$
$=\sum_{\mathrm{n}}(\mathrm{t})^{\mathrm{n}}(\mathrm{x} / 2)^{\mathrm{n}} \sum_{\mathrm{s}}(\mathrm{x} / 2)^{2 \mathrm{~s}} \times(-1)^{\mathrm{s}} /(\mathrm{n}+\mathrm{s})!\mathrm{s}!$
Note that ' n ' runs from $-\infty$ to $+\infty$, By definition, this equals : $\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$. So, equating the coefficient of t^{n} on both sides,

$$
\mathrm{J}_{\mathrm{n}}(\mathrm{x})=(\mathrm{x} / 2)^{\mathrm{n}} \sum_{\mathrm{s}}(\mathrm{x} / 2)^{2 \mathrm{~s}} \times(-1)^{\mathrm{s}} /(\mathrm{n}+\mathrm{s})!\mathrm{s}!,
$$

which clearly agrees with the expression obtained from solving the differential equation.

Recursion Relations

$$
\mathrm{G}(\mathrm{x}, \mathrm{t})=\mathrm{e}^{\mathrm{x} / 2(\mathrm{t}-1 / \mathrm{t})}=\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})
$$

Differentiating both the expressions partially w.r.t. ' x ':

$$
1 / 2(t-1 / t) \mathbf{e}^{\mathrm{x} / 2(\mathrm{t}-1 / \mathrm{t})}=\sum_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})
$$

Replacing the expression $\left[\mathrm{e}^{\mathrm{x} / 2(\mathrm{t}-1 / \mathrm{t})}\right]$ on the LHS again by $\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$:

$$
\begin{aligned}
& 1 / 2(\mathrm{t}-1 / \mathrm{t}) \Sigma_{\mathrm{n}} \mathbf{t}^{\mathrm{n}} \mathbf{J}_{\mathrm{n}}(\mathbf{x})=\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathbf{J}_{\mathrm{n}}(\mathrm{x}) \\
& \Rightarrow 1 / 2 \Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}+1} \mathbf{J}_{\mathrm{n}}(\mathrm{x})-1 / 2 \Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})=\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})
\end{aligned}
$$

Equating the coefficient of t^{m} on both sides :

$$
\left[\mathbf{J}_{\mathrm{m}-1}(\mathbf{x})-\mathbf{J}_{\mathrm{m}+1}(\mathbf{x})\right]=2 \mathbf{J}_{\mathrm{m}^{\prime}}(\mathbf{x}) \cdots(\mathbf{1})
$$

Starting again from the definition : $G(x, t)=e^{x / 2(t-1 / t)}=\Sigma_{n} t^{n} J_{n}(x)$, differentiating both the expressions partially w.r.t. ' t ' :

$$
1 / 2\left(1+1 / t^{2}\right) \mathrm{e}^{\mathrm{x} / 2(\mathrm{t}-1 / \mathrm{t})}=\sum_{\mathrm{n}} \mathrm{nt}^{\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})
$$

Replacing the expression $\left[\mathrm{e}^{\mathrm{x} / 2(\mathrm{t}-1 / \mathrm{t})}\right.$] on the LHS again by $\Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$:

$$
\begin{aligned}
& (\mathrm{x} / 2)\left(1+1 / \mathrm{t}^{2}\right) \Sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})=\Sigma_{\mathrm{n}} \mathrm{nt}^{\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}}(\mathrm{x}) \\
\Rightarrow & (\mathrm{x} / 2) \Sigma_{\mathrm{n}}\left[\mathrm{t}^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})+\mathrm{t}^{\mathrm{n}-2} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})\right]=\Sigma_{\mathrm{n}} \mathrm{nt}^{\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})
\end{aligned}
$$

Equating the coefficient of $\mathbf{t}^{\mathbf{m - 1}}$ on both sides:

$$
\begin{aligned}
& (\mathrm{x} / 2)\left[\mathrm{J}_{\mathrm{m}-1}(\mathrm{x})+\mathbf{J}_{\mathrm{m}+1}(\mathrm{x})\right]=\mathrm{m} \mathbf{J}_{\mathrm{m}}(\mathrm{x}) \\
\Rightarrow & {\left[\mathbf{J}_{\mathbf{m}-\mathbf{1}}(\mathbf{x})+\mathbf{J}_{\mathrm{m}+\mathbf{1}}(\mathbf{x})\right]=(\mathbf{2 m} / \mathbf{x}) \mathbf{J}_{\mathrm{m}}(\mathbf{x}) \cdots(\mathbf{2}) }
\end{aligned}
$$

One can also generate the following relations from (1) and (2) :

$$
\begin{aligned}
& \mathbf{d} / \mathbf{d x}\left\{\mathbf{x}^{\mathrm{n}} \mathbf{J}_{\mathrm{n}}(\mathbf{x})\right\}=\mathrm{nx}^{\mathrm{n}-1} \mathbf{J}_{\mathrm{n}}(\mathrm{x})+\mathrm{x}^{\mathrm{n}} \mathbf{J}_{\mathrm{n}}{ }^{\prime}(\mathrm{x}) \\
& =\mathrm{x}^{\mathrm{n}}\left[(\mathrm{n} / \mathrm{x}) \mathrm{J}_{\mathrm{n}}(\mathrm{x})+\mathrm{J}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})\right] \\
& =x^{n}\left[\left\{\mathbf{J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right\} / 2+\left\{\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})-\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right\} / 2\right] \\
& =x^{n} \mathbf{J}_{n-1}(x) \cdots(3) \\
& \mathbf{d} / \mathbf{d x}\left\{\mathbf{x}^{-\mathbf{n}} \mathbf{J}_{\mathbf{n}}(\mathbf{x})\right\}=-\mathrm{n}^{-\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})+\mathrm{x}^{-\mathrm{n}} \mathrm{~J}^{\prime}{ }_{\mathrm{n}}(\mathrm{x}) \\
& =\mathrm{x}^{-\mathrm{n}}\left[-(\mathrm{n} / \mathrm{x}) \mathrm{J}_{\mathrm{n}}(\mathrm{x})+\mathrm{J}_{\mathrm{n}} \mathrm{n}(\mathrm{x})\right] \\
& =x^{-n}\left[-\left\{\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right\} / 2+\left\{\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})-\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right\} / 2\right] \\
& =-\mathbf{x}^{-n} \mathbf{J}_{\mathrm{n}+1}(\mathbf{x}) \cdots(4)
\end{aligned}
$$

