
Forced Vibrations 

Forced vibrations and resonance: 

The study of forced vibrations and resonance is of special interest in sound, as sound is detected by 
forced vibration or resonance it produces in the receiver. Resonance is special kind of forced 
vibration. 

Forced vibrations: 

Since the vibrating system gradually loses its amplitude, energy has to be supplied from without if 
the system is to be maintained in vibration. If an external periodic force acts on a vibrating system, 
the system tends to vibrate with its own natural frequency, while the applied (driving) force tries to 
impress its own frequency of vibration on the system. Initially, vibrations of both frequencies are 
simultaneously present. In course of time, the natural vibration dies away due to the resisting forces 
that operate. Finally, the vibrations due to the impressed driving force are fully established. The 
vibration of a system with period the same as that of an impressed periodic force is called forced 
vibration. 

Resonance: 

The amplitude of forced vibration is generally small. If the period of applied force agrees with the 
natural period of the vibrating system the vibrations build up quickly and grow to relatively large 
amplitude even if the impressed force is small. As the motion grows, the resistance to the motion 
also increases. A state of steady oscillation is reached when the energy supplied by the external 
source is fully used up in overcoming the resistance to the motion. The particular case of forced 
vibration where the applied force agrees in period with natural period of unresisted vibration of the 
system, communicating maximum energy to the system, is known as resonance. A resonant vibrator 
is also termed as sympathetic vibrator. 

Theoretically, there are two cases of resonance to distinguish, (i) amplitude resonance, and (ii) 
velocity or energy resonance. 

Amplitude resonance: 

In this case the amplitude of the forced vibration acquires a maximum value. Since the potential 
energy is proportional to the square of amplitude, the system will have maximum potential energy 
under this condition. 

Velocity resonance: 

In this case the velocity is a maximum. This corresponds to the maximum energy transfer between 
the forcing system and the forced system, and gives the system maximum kinetic energy. 

When the damping is negligible, both the resonances occur at practically the same frequency, which 
is the natural frequency of the system. When there is appreciable damping, the two resonances 
occur at slightly different frequencies. Velocity resonance occurs at the frequency equal to the 
undamped frequency of the system in forced vibration; this is more important case. 



Characteristics of forced vibration: 

(i) Initially, vibrations with the natural frequency of the vibrating system and the frequency of the 
impressed force are both present simultaneously. If the frequencies are close enough they may form 
beats. In course of time the natural vibration dies out and the system vibrates with constant 
amplitude at the driving force. This is known as steady state vibration. 

 

(ii) The amplitude of forced vibration is generally small except in case of resonance, when its 
amplitude may be quite large. 

Difference between free and forced vibrations: 

(i) Free vibration is executed by a system under the action of its own elastic forces without being 
subjected to any external force. But, forced vibration is executed by a system under the action of an 
externally applied periodic force. 

(ii) The initial amplitude of free vibration may have any value, large or small, depending on the initial 
supply of energy. With damping the amplitude diminishes exponentially with time. Amplitude of 
forced vibration is generally small except when resonance occurs. Under resonance conditions the 
amplitude of vibrations is large. Near resonance the amplitude increases rapidly as the frequency of 
the applied force approaches the frequency of the unresisted free vibration. 

(iii) Frequency of free vibration depends on the mass and elasticity which are treated as localized. 
Frequency of forced vibration in steady state is equal to that of the applied periodic force. 

(iv) Free vibration eventually ceases due the action of resisting forces. But, forced vibration 
continues as long as the applied force acts. 

Forced vibration: 

A particle executing damped simple harmonic motion is subjected to two forces: (i) restoring force 
proportional to the distance, (ii) a resisting or retarding force proportional to the instantaneous 
velocity of the particle. Therefore, the particle executing damped SHM loses energy and hence its 
amplitude decreases due to damping. If the particle is to execute oscillatory motion without losing 
amplitude, a force of constant amplitude of the form FCospt  or FSinpt (F is the amplitude of the 

force and p is its circular frequency) has to be applied to the vibrating particle.  

If ‘m’ be the mass of the vibrating particle, ‘K’ the damping constant, ‘s’ is the stiffness/spring 
constant, and FCospt is the externally applied periodic force then the equation of motion of the 

forced vibrating particle can be written in the following form 

mx sx K FCosptx      

mx K sx FCosx pt    



This is a non-homogeneous second order differential equation. There are several ways of solving this 
differential equation. We shall find it convenient to use complex numbers. 

To get the equation of motion in complex form, let 1x  and 2x be the displacements when the forces 

are represented by FCospt  and FSinpt  respectively. 

 1 1 1mx K sx FCox spt    

and  2 2 2mx K sx FSix npt    

 2
111 2x b x fCosx pt    

and  2
222 2x b x fSinx pt   ...................(1) 

where 2 Kb
m

 , 2 s
m

   and f F
m

 . 

Now, from eq. (1) we can write,  

1 2 12 2
2

1( ) 2 b( ) ) (( )x jx x jx f Cospt jSx jx inpt         ................(2) 

where 1j   . 

If we write 1 2X x jx  , where X is a complex quantity, the above equation reduces to 

22 jptb X eX fX  

  ........................(3) 

Complementary function of eq. (3) can be found from the equation 

22 0bX X X 

  ....................(4) 

When b < ω (which is usually the case) the solution of eq. (4) is 

bt 2 2 2 2
1 2

bt 2 2

( t t)

( t )

X e ACos w b A Sin w b

ae Cos w b 





   

  
...........................(5) 

where 1 CosA a   and 2A aSin . 

To find the particular solution of eq. (3) we put jptX Ae .........(6) in eq. (3) where A  is a complex 
quantity. 

 2 2( 2 . ) jpt jptp b jp w Ae fe     


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2 2 2 2 2 2 2

( ) .2
( ) .2 ( ) 4

f w p j bpA f
w p j bp w p b p

 
 

   
................(7) 



Let 2 2w p CCos   and 2bp CSin . 

 2 2 2 2 2( ) 4C w p b p    and 2 2

2tan
( )

bp
w p

 


...............(8) 


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j
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
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 
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 

..........................(9) 

 ( )

2 2 2 2 2( ) 4
j ptfX e

w p b p


 
.......................(10) 

 1 2 2 2 2 2 2
{Cos( ) ( )}

( ) 4
fx jx pt jSin pt

w p b p
     

 
..............................(11) 

 1 2 2 2 2 2
Cos( )

( ) 4
fx pt

w p b p
 

 
 

and 2 2 2 2 2 2
Sin( )

( ) 4
fx pt

w p b p
 

 
................(12) 

1x  and 2x  represent the particular solutions when the applied force is represented by FCospt  and 

FSinpt  respectively. 

Now, 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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/
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f F m F
w p b p w p b p w mp b p m

F F F
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  
   

................(13) 

where 2 2( )m
sZ mp K
p

   ...................(14) is known as the mechanical impedance and 

mpm
s
p

    is known as the mechanical reactance. 


1

2
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m

m

Fx pt
pZ
Fx pt
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



 

 
...............................(15) 

If we write the differential equation of forced vibration as  



22 jptb X eX fX  

   

Taking the real part of the solution as in eq. (15) and following eq.(5), the total solution is given by 

bt 2 2( t ) Cos( )
m

Fx ae Cos w b pt
pZ

      ....................(16) 

The first term in eq. (16) gives the natural vibration of the system i.e. motion it executes when 
disturbed from the equilibrium and left to itself. 

The second term represents the forced vibration i.e. the response of the particle to the externally 
imposed force, called the driving force, which maintains the vibration. At the initial stage, effect of 

both the term is present; but with time the natural motion dies down due to the factor bte  and we 
are left with steady state motion represented by the second term. If ω and p are close together in 
value, the two vibrations produce beats, which last longer if b is smaller. 

The motion represented by the first term in eq. (16) is called the transient. Transient appears both 
when the driving force is applied and when it is removed. 

When b is greater than or equal to ω, the corresponding solution of 0m xx K sx   will give the 
transient. Such case is however is of little practical interest. 

Hence the steady state solution is given by 

Cos( )
m

Fx pt
pZ

  .....................(17) 

Velocity at steady state: 
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( )..................(18)
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where 
2
   ............(19) 

Now, 
2
    

 2 2

2tan tan( )
2 ( )

bp
w p

   


 



 2 2

2cot
( )

bp
w p

 


 


2 2( )tan
2
p w
bp

 
 .......................(20) 

Here θ is the phase lag of velocity behind the driving force. 

Resonance: 

In forced vibration the displacement and velocity amplitudes of the driven system depend on the 
frequency of the driving force. The value of p when the value of amplitude of the driven system 
becomes maximum can be calculated and we say resonance occurs between the driver and the 
driven system. Two cases may be distinguished, (i) amplitude resonance and (ii) velocity resonance. 

(i) Amplitude resonance: 

The displacement amplitude is given by 

2 2 2 2(s )m

F FA
pZ mp K p

 
 

 

If A is to be the maximum for some value of p, the denominator 2 2 2 2(s )mp K p   will be a 

minimum at that value i.e. 2 2 2 2(s )mp K p  will also be a minimum. Hence at this value of p we 

have, 

2 2 2 2{(s ) } 0d mp K p
dp

    

Or, 2 22(s )( 2mp) .2 0mp K p     

Or, 2 2(s ).2 2mp mp K p   

Or, 
2

2s
2
Kmp
m

   

Or, 
2

2

2
Kmp s
m

   


2

2
22

s Kp
m m

   

Now, 2s
m

 , where ω is the natural frequency of the driven system without damping and 

2K b
m
 , where b is the damping constant. Using these values we have, 



2 2 22p b   

 2 22p b   

This is the frequency p of the driving force at which the amplitude resonance occur. 
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 
     


   

  
   
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This is the value of the displacement amplitude at amplitude resonance. 

Since the potential energy is given by 21
2
sx , its value becomes a maximum (with varying p) when 

the amplitude is a maximum. Thus the amplitude resonance corresponds to the maximum potential 
energy of the driven system as the frequency p of the driver is varied (keeping the amplitude F of the 
driving force constant). 

Note: The frequency 2 22p b   for amplitude resonance is neither equal to the natural 

frequency ω of the driven system nor the frequency 2 22b  of the damped vibration. The 
resonance frequency is lower than both. 

(ii) Velocity resonance: 

The velocity amplitude is given by 

2 2(mp )m

F FV
Z s K

p

 
 

 

With p as the only variable, V will be maximum when the denominator 2 2(mp )s K
p

   will be 

minimum and 2 2(mp )s K
p

   is minimum when mp 0s
p

   i.e. when mechanical reactance 

m will vanish. 

mp 0s
p

   



Or, 2 2sp
m

   

 p   

The velocity resonance frequency is thus equal to the natural frequency of the driven system 
without damping. 

 max
FV
K

  

Since the kinetic energy is given by 2 21 1 ( )
2 2

dxmv m
dt

 , its value reaches maximum (with varying p) 

when the velocity amplitude reaches maximum. Thus kinetic energy of the driven system is a 
maximum at velocity resonance. 

2
2

2

1( )
2 2res res

mFKE mV
K

   

When b << ω i.e. for small damping the condition for the two resonances become practically 
identical. 

Note: The condition for velocity resonance ( mp 0s
p

  ) is that of disappearance of mechanical 

reactance. Thus we may say that resonance occurs at that frequency of the driven force at which the 
mechanical reactance vanishes. The mechanical impedance at resonance is  

res( ) KmZ   

Power in forced vibration and resonance: 

The instantaneous rate of work done by the driving force in steady state is given by 

2
2

2
2

( ) FCos . FCos . ( )

(Cos )

1(Cos 2 )
2

m

m

m

dx FP t pt pt Cos pt
dt Z

F ptCos SinptCosptSin
Z
F ptCos Sin ptSin
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

 

 

  
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 

 

The average value of power is 



2
2

0

2
2

0 0
2

1 1P . (Cos 2 )
2

1 1. ( Cos dt 2 dt)
2

1. . .
2

T

m

T T

m

m

F ptCos Sin ptSin dt
Z T

F Cos pt Sin Sin pt
Z T

F TCos
Z T

 

 



  

 




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0

Cos dt=
2

T Tpt  and 
0

2 dt=0
T

Sin pt ] 


2 2

2 2

2P
2 2

( mp)m m

F F bpCos
Z Z s K

p

  
 

 

 

Now, 2 2 2 2 2 2 2( mp) ( ) 4m
s mZ K w p b p
p p

       


2 2

2P .
2 2mm m

K pF F Km
pZZ Z
m

    

Since at resonance mZ K , 

2 2

2P
2 2res
F K F
K K

     

This is the maximum value of power that can be obtained by varying p alone. 

Work done against the retarding force: 

The retarding force acting on the particle is Kx Kv . 

The instantaneous rate of work done against the retarding force is 

2
2

2
2W( ) . . ( )

m

dxt x x K
dt

FK K Cos pt
Z

      



Hence the average power spent in overcoming the retarding force is 

2
2

2
0

2 2

2 2

1W . ( )

1. .
2 2

T

m

m m

F K Cos pt dt
Z T

F K T F K
Z T Z

  

 


 

Conclusion: 

Thus the average instantaneous rate of work done by the driving force in steady state is equal to the 
power spent in overcoming the resistance. In steady state the work done by the driving force in a 
complete cycle is fully spent in overcoming the force resisting the motion. This also holds at 
resonance. 

Hence an oscillatory body like pendulum under this condition will oscillate indefinitely. 

Power factor: 

2

P .
2 2 2m m

F F FCos Cos
Z Z

   
 

= RMS force X RMS velocity X Cos  

Because of the phase difference   between the applied force and velocity of the particle, the power 
is not equal to the product of their effective value, but to this quantity multiplied by Cos . Cos  is 
hence called the power factor. 

2 2 2 2 2

2 2 2
( ) 4 m m m

bp bp bm KCos pZ Z Zw p b p
m

    
 

 

Since at resonance mZ K , 1Cos  . 

 0   

Hence at resonance the applied force and velocity are in phase. 

Sharpness of resonance: 

The average power supplied to the driven system is given by 

2 2 2

22
2 2 2 2 2

2

P
2 2{( m ) } 2( m 2 )m

F K F K F K
s sZ p K p ms Kp p

   
    

 

If we plot the average power supplied to the driven system as a function of the frequency p of the 
driving force of constant amplitude, a curve similar to the figure below is obtained. 



 

It has a maximum value 
2

2
F
K

at the resonance frequency 0p   and falls off more or less rapidly at 

lower and higher frequencies. When K is small (curve I), the curve acquires a high peak value. When 
K is large (curve II), the peak is low. For small values of K, the value of the average power P   falls 
off rapidly as the frequency p of the driving force differs more and more from 0p  . Resonance in 

such a case is said to be sharp. On the other hand, when K is large P   changes much more slowly 
as p departs from ω. Resonance in such a case is said to be broad or flat. The differences in 
sharpness of resonance due to differences in the value of K are very clearly seen when the ratio 

P
P res

 
 

 is plotted against p as shown in the figure below.  

 

The sharpness of resonance means the rapidity with which the average power diminishes as p 
departs from the resonance frequency ω. It can be seen from fig.1 that there are two values of p, 
one smaller than the resonance frequency ω and other greater than ω, for which the average power 

is 
1 P
2 res  . These two frequencies are known as half-power frequencies.  Frequency 1p  which is 

lower than ω is called lower half-power frequency and frequency 2p which is greater than ω is 

known as the upper half-power frequency. 2 1p p is called the band-width. The quality factor Q  is 

defined as the ratio of resonance frequency and band-with. 

2 1

Q
p p





 

Quality factor can be taken as the measure of sharpness of resonance. 



We have, 
2

P
2res
F
K

    while 
2

2P
2 m

F K
Z

  . The values of 1p and 2p can be found by solving the 

relations  
21P P

2 4res
F
K

      and 
2

2P
2 m

F K
Z

  . 


2 2

22 4m

F K F
Z K

  

Or, 2 22mZ K  

Or, 2 2 22K K   

Or, 2 2K   

 K    

Now, 
smp
p

   . 

 1
1

smp K
p

    and 2
2

smp K
p

   

From the first equation we have, 

1 1( )s K mp p   

Now putting the value of s in the second equation we have, 

1
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2

( )pmp K mp K
p
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2

1 1
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 2 1 2Kp p b
m
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2 1 2

mQ
p p K b
  
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

. 



Thus sharp resonance is associated with high resonance frequency and small damping.  

 Problems: 

1. Show that for forced vibration the total energy of the vibrating system is not constant, and also 
prove that in such a case 

2
0
2

 
 

average PE
average KE




  

where 0
s
m

  . 

Sol: 

For a particle executing forced vibration displacement is given by 

x(t) ( t )ACos    , 

where A is the amplitude of vibration. 

The kinetic energy of a particle of mass m in forced vibration is given by 

2 2 2 21 1 ( t )
2 2

K m mxE A Sin     

The potential energy of the particle is given by 

2 2 2 2 2 2
0

1 1 1PE ( t ) ( t )
2 2 2
sx sA Cos m A Cos          

Hence the total energy is given by 

2 2 2 2 2 2
0

1 1E KE PE ( t ) ( t )
2 2
m A Sin m A Cos            

This shows that E is a function of time t, and therefore is not a constant. 

Now, the average Kinetic energy over a complete cycle is 
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T TKE m A Sin dt m A m A
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Again, the average potential energy over a complete cycle is given by 
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2. If 1 and 2 be the half-power frequencies, and 0 is the resonant frequency of a forced 

vibrating particle, show that 2
0 1 2  . 

Sol: 

For a forced vibrating system the average power is given by 
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P   becomes maximum at resonance when 0  and is given by 
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Or, 2 22mZ K  

Or, 2 2 2( ) 2s m K K

    

Or, 2 2( )s m K

   

Or, 
2

2 20( )m m K



   

Or, 
2

2 2 2 2
02 ( )m K 


   



Or, 
2 2

2 2 2 2 2 2 2 2
0 2 2( ) . 4 . 4K b m b

m m
        

Or, 4 4 2 2 2 2
0 02 4b        

Or, 4 2 2 2 4
0 02( 2 ) 0b        

This is a quadratic equation in 2 which has two roots say 2
1  and 2

2 . 

 2 2 4
1 2 0    

 2
0 1 2   

 

 

 

 

 


