
Radiation: 

Heat can be transferred from a hotter body to a cold body even when the two bodies are separated 
in vacuum. Heat in this case is transferred by the process of radiation. The radiant energy, however, 
does not exhibit itself unless it falls on matter. When radiation falls on a matter, it is absorbed by 
matter and is converted into heat energy. 

The radiant energy is electromagnetic nature, similar to light. They travel in straight lines with the 
same velocity as light (3x108 m/sec). They exhibit reflection, refraction, diffraction and polarization. 
They carry energy with themselves and exert pressure. 

The radiant energy or radiation can be of any wavelength from 0 to∞ . Thermal radiation from 
bodies depends on the temperature of the body and its surface. 

Radiant energy and matter: 

When radiation falls on matter, it may be partly reflected, partly transmitted and partly absorbed. If 
r be the fraction of total energy reflected – reflectance, a the fraction absorbed - absorbance and t
the fraction that transmitted – transmittance, then 

1r t a+ + =  

The values of r , a , t may be different for different wavelengths. We thus use rλ , tλ , aλ to denote the 

reflectance, transmittance and absorbance of the substance for wavelengthλ . Thus,  

1r t aλ λ λ+ + =  

For bodies having 0, 0a t= = , we have 1r = . Such bodies are called perfectly white bodies. A piece 

of chalk approximately can be assumed to be a perfectly white body. However, perfectly white body 
is an idealized concept. 

For bodies having r 0, 0t= = , we have a 1= . Such bodies are called the perfectly black bodies. A 

perfectly black body neither reflects, nor transmits; it absorbs the entire radiation incident on it. 
Lampblack approximately can be assumed to be a perfectly black body. However, perfectly black 
body is an idealized concept. 

Prevost’s theory of exchange: 

The idea of radiant energy was much confused prior to the Privost’s theory of exchange in 1792. 
People talked about ‘hot radiations’ and ‘cold radiations’. For instance, people used to believe that 
ice produces a sensation of cold because it emits cold radiations. It was Prevost who cleared all the 
confusions. According to his exchange theory, a substances at all finite temperature emit ‘radiant 
energy’ and the amount of radiant energy increases with the temperature of the substance and is 
not affected by the presence of surrounding bodies.  

Black body and its realization: 

A perfectly black body is defined as the body that absorbs the entire radiations incident on it. 
Therefore, a black body neither reflects, nor transmits any radiation. When such a body is heated to 



high temperatures, it emits radiations of all wavelengths and such radiations are called the total 
radiation. Kirchhoff showed theoretically that an enclosure whose walls are impervious to any type 
of radiations and is maintained at a constant temperature behaves as a perfect black body and the 
quality of radiations emitted by it is that of total radiation, i.e., they depend on the temperature of 
the enclosure and are independent of the nature of the material of the wall of the enclosure. If any 
matter is placed inside the enclosure, a steady state will be reached and the matter will attain the 
temperature of the enclosure and will emit black radiation characteristic of that temperature.  

Kirchhoff’s law: 

Emissive power: 

The amount of energy emitted in the form of radiation of wavelengths betweenλ and dλ λ+  by an 
isotropic body at a particular temperatureT , per unit area of the body and per unit time is called 
the emissive power of the body at that temperature for the radiation of wavelengthλ . It is denoted 
by eλ . 

Absorptive power: 

If a given amount of energy in the form of radiation of wavelengths betweenλ and dλ λ+  is 
incident on an isotropic body at temperatureT , then the fraction of this energy absorbed by the 
body is called the absorptive power of the body at the temperatureT for the radiation of 
wavelengthλ .It is denoted by aλ . 

Kirchhoff’s law: 

Kirchhoff’s law states that the ratio of the emissive power to the absorptive power for radiation of a 
given wavelength is the same (constant) for all bodies at the same temperature and is equal to the 
emissive power of a perfect black body at that temperature. 

If eλ and aλ be the emissive power and the absorptive power of a body at temperatureT for the 

radiation of wavelengthλ , then 

tan
a
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λ
λ

= =  

where Eλ is the emissive power of a perfect black body at temperatureT  for the radiation of 

wavelengthλ . 

Pressure of radiation: 

As radiation is identical with light, it also exerts small but finite pressure on the surfaces on which it 
is incident. 

Stefan-Boltzmann law: 

The dependence of total radiation from a radiator on its temperature was first studied 
experimentally by Stefan. He concluded that the total radiation is proportional to the fourth power 



of the absolute temperature of the body. As a black body is supposed to behave as a perfect gas, 
Boltzmann applied the law of thermodynamics to radiation and deduced the Stefan’s law 
theoretically. Since then, the law is generally referred to as Stefan-Boltzmann law. 

If a black body at absolute temperatureT is surrounded by another black body at absolute 
temperature 1T , the amount of radiation emitted per second per unit area of the former body is  

4 4
1( )Q T Tσ= −  

whereσ is a constant and is known as the Stefan’s constant. This is Stefan-Boltzmann law. 

Newton’s law of cooling: 

Newton’s law of cooling states that the rate at which a body loses heat energy due to radiation is 
directly proportional to the excess temperature, i.e., the difference of temperature between the 
body and the surroundings, provided the difference of temperature is small. 

LetT and 0T be the temperatures of the body and the surrounding respectively. Then by Stefan’s law, 

the loss of heat energy due to radiation per unit area per unit time is given by 
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If 0( )T T− be small, 0T T . 

3
0 0 0( ) x 4 ( )Q T T T T Tσ β∴ − = −  

where 3
04 Tβ σ= is a constant, since 0T is a constant. 

0( )Q T T∴ ∝ −  

This is Newton’s law of cooling.   

Energy distribution in black body radiation: 

 

An ideal black body can be realized in practice by heating a hollow enclosure with a very small 
orifice, to an arbitrary temperature. The inner surface of the enclosure is coated with lampblack. Any 



radiation entering the cavity through the orifice is almost entirely absorbed after multiple reflections 
from the wall of the cavity and very little can come out of the cavity through the orifice as it is very 
small. Thus the cavity may be taken to have unit absorptive power and it behaves like a black body. 

The inner wall of the heated cavity can also emit radiation. This radiation has the characteristics of 
black body radiation. The radiation spectrum can be analyzed by an infrared spectrometer. 

The variation of the intensity of the emitted radiation Eλ as a function of the wavelength for 

different temperatures of the black body is shown in the figure below. For a given temperature as 
wavelengthλ increases Eλ first increases with increasingλ at very short wavelengths, attains a 

maximum at some wavelength mλ and then decreases again with further increase inλ . The value of

mλ depends on the temperatureT of the black body and it decreases with increasing temperature. It 

is independent of the nature of the emitting body. Eλ vsλ curves have the same nature at different 

temperatures. However, at higher temperatures the intensity is higher at all wavelengths. 

 

The wavelength mλ  at which the intensity distribution curve has the maximum and the temperature 

of the black body are found to obey the empirical relation 

constantmTλ =  

This is known as the Wien’s displacement law (1893). 

The total power E radiated per unit area per unit time is found to depend on the temperature of the 
black body and found by integrating Eλ for all possible values of wavelengthλ . 
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Wien’s law: 

From thermodynamical considerations Wien proposed an empirical relationship between the 
intensity of the emitted radiation Eλ and wavelengthλ for a given temperatureT . This is of the 

following form: 



5 ( )AE d f T dλ λ λ λ
λ

=  

where A is a constant and ( )f Tλ is a function of the product Tλ . 

The functional form ( )f Tλ cannot be deduced from thermodynamics. It is necessary to assume a 

suitable model for the radiating system in order to determine it. 

Wien himself proposed an expression for the functional form of ( )f Tλ on the basis of some 

arbitrary assumptions regarding the mechanism of emission and absorption of radiation. Based on 
these assumptions, Wien’s law for the energy density of the black body radiation can be written as 
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The constants a and b were chosen arbitrarily so as to fit the experimental energy distribution 
curves. Since the theory was not based on any possible physical model, it proved to be 
unsatisfactory. 

Rayleigh-Jeans law: 

After the failure of Wien’s law to explain the energy distribution curve at longer wavelength, 
Rayleigh and Jeans approached the problem in a different fashion. 

They assumed that the radiating system is composed of a collection of charged linear harmonic 
oscillators which according to the electromagnetic theory of light radiate electromagnetic waves 
because of their accelerated motion. They can also absorb electromagnetic radiation. If we consider 
a cavity full of radiation, then the atomic oscillators in the walls of the cavity will continually 
exchange energy with the radiation in the cavity. Ultimately equilibrium will be reached when the 
energy density of e.m. radiation will assume an equilibrium value determined by the temperatureT  
of the cavity walls. 

When the temperature of the walls is increased, the amplitudes of the existing modes of vibration of 
the oscillators are increased. Also, new modes are excited for which the frequencies are higher. Thus 
radiant energy density in the cavity is increased until a new equilibrium is reached. 

According to classical mechanics, the total energy of a linear harmonic oscillator of mass m
oscillating along X-direction is given by 

2
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pE kx
m

= +  

It thus has two degrees of freedom. According to the law of equipartition of energy, the mean 

energy corresponding to each degree of freedom is 
1
2

kT and hence the mean energy of the 

oscillator is 

kTε =  



Here k is the Boltzmann constant. 

The cavity is filled with e.m. radiation of wavelength 0 to∞ . They are reflected time and again from 
the walls of the cavity and thus form stationary waves in the space of the cavity. 

To calculate the energy density of radiation in the cavity for a given frequency
cν
λ

= , we have to 

find the number nλ  of oscillators per unit volume having frequencyν and to multiply it by the mean 

energy kTε = . nλ can be calculated by determining the number of modes of stationary vibrations 

which can be excited in the space of the cavity. For simplicity we assume cavity in the form of three 
dimensional box of cubical shape with sides a and radiation is incident normally on the walls. 

Let the incident and the reflected wave trains be 

1 2
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λ λ

= − = +  

Here c andλ are the velocity and wavelength of the wave, and A is the amplitude. 

∴The resultant displacement is given by 

1 2
2 2 2y 2 x ct cty y ACos Sin CSinπ π π
λ λ λ
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where
22 xC ACos π
λ

= is the amplitude of the resultant vibration. 

Nodes are formed at points where 0y =  for all time t , i.e., 
2 0xCos π
λ

= . 

Therefore,
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Thus, nodes are formed at distances 
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Distance between two successive nodes is
2
λ

. 

If 1n nodes are formed between the walls, then 1. 2
n aλ

= . If the wave meets the reflecting surface at 

an angle 1θ , then  



1 1.
2

n aCosλ θ=  

If 1 2 3, ,θ θ θ be the angles which the normal to the plane wavefront makes with the normal to the 

three pairs of faces of the cube, then 
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= , 2.
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n anλ
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where , ,l m n are the direction cosines. 
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A set of values of 1 2 3, ,n n n  satisfying the above equation represents a particular mode of vibration. 

To calculate the number of modes of vibration in the frequency intervalν and dν ν+ we represent

1 2 3, ,n n n in a three dimensional diagram where 1 2 3, ,n n n are along X-,Y-,Z-axes respectively. Each 

combination of 1 2 3, ,n n n values is then represented by a point in this diagram whose coordinates are

1 2 3( , , )n n n . 

In two dimensions, this will look like as shown in the figure below where each circle represents a 
particular mode of vibration. It is also evident that each unit square contains one circle. Thus, the 
number of modes of vibration in the frequency intervalν and dν ν+ can be calculated by counting 

the number of unit squares in the annular area between two circular arcs of radii 
2 2a ar

c
ν

λ
= = and

2 ( )a dr dr
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+ = in the first quadrant. 

 

In actual three dimensional case, the number of modes of vibration in the frequency intervalν and
dν ν+ can be calculated by counting the number of unit cubes in the first octant of the spherical 

shell of radii
2 2a ar

c
ν
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= = and

2 ( )a dr dr
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+ = . 

Hence the number of modes of vibration in the frequency intervalν and dν ν+ is given by 
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Here 3V a= is the volume of the cavity. Hence the number of modes of vibration per unit volume of 
the cavity for frequencies in the intervalν and dν ν+ is given by 

2
3

4N dn d d
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ν

ν
ν πν ν ν= =  

Since e.m. radiation is transverse in nature with two possible directions of polarization, the above 
expression should be multiplied by two. 

2
3

8n d d
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Number of oscillators per unit volume emitting radiation of wavelength in the intervalλ and dλ λ+     

4

8n d dλ
πλ λ
λ

∴ =  

Hence the energy density of the black body radiation of wavelength in the intervalλ and dλ λ+ is 
given by 

4

8 kTu d n d dλ λ
πλ λ ε λ
λ

= =  

This is known as the Rayleigh-Jeans law. 

The intensity of the emitted radiation is given by 

4

2
4
c ckTE d u d dλ λ

πλ λ λ
λ

= =  

This equation agrees well with the experimental results for longer wavelengths. However, for 
shorter wavelengths, it fails completely. uλ and hence Eλ approaches infinity as 0λ → , but 

experimental result shows that 0Eλ → as 0λ → . This serious disagreement between theory and 

experiment is known as the ultraviolet catastrophe. This indicates the limitations of classical 
mechanics on the basis of which the equipartition law is deduced and which is used in this 
deduction. 

Planck’s law of black body radiation: Quantum hypothesis 

The failure of R-J distribution to explain the observed energy distribution law of black body radiation 
showed that there was something wrong with the equipartition law or with the classical 
electromagnetic theory or both. 

German physicist Max Planck (1900) then put forward a bold new postulate regarding the nature of 
vibration of linear harmonic oscillators which are in equilibrium with the electromagnetic radiation 



within the cavity. According to Planck, an oscillator can have a discrete set of energies which are 
integral multiples of a finite quantum of energy 0 hε ν= , where h is a constant known as the Planck’s 

constant and ν is the frequency of the oscillator. Thus the energy of the oscillator can only have 
values 

0n n nhε ε ν= =  

where n is zero or an integer. 0n = corresponds to the lowest energy state of the oscillator and is 
called the ground state and its energy is zero. 

 Planck further assumed that the change in energy of the oscillator due to the emission or absorption 
of radiation can take place by a discrete amount hν . By fitting his theory to the experimental data, 
Planck estimated the value of h . Planck’s constant h is a universal constant and plays a crucial role in 

all quantum mechanical phenomena. Its value is 346.62618x10h −= Joule.second (Js). 

Since radiation is emitted by oscillators, and since according to Planck the change in energy of the 
oscillators can take place by discrete amount, the energy carried by emitted by radiation will be hν
which is equal to the loss of energy of the oscillator. This is also the energy gained by the oscillator 
when it absorbs radiation. No absorption of energy by the oscillator can take place unless the energy 
of the radiation 'hν is equal to the possible energy change of oscillator hν , i.e., unless 'ν ν= . 

According to the postulates of Planck, the oscillator can exist in a set of discrete energy states 
0, , 2 ,3h h hν ν ν etc. 

 

The number of oscillators in an energy state n nhε ν= is given by the Maxwell-Boltzmann distribution 

function given by 

n 0 0N N e N e
n nh

kT kT
ε ν− −= =  

For 0nε = , n 0N N= so that 0N is the number of oscillators in the ground state. 

Since the energies of the oscillators can only have discrete values, the mean value of energy of the 
oscillator is given by 
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  Here
2
h
π

= and 2ω πν= is the circular frequency. 

[Note: If h kTν  , i.e., 1h
kT
ν
 , average energy 

(1 ) 1

h kTh
kT

νε ν= =
+ −

which is the classical limit. 

This corresponds to the continuous variation of the oscillator energy.] 

The number of modes of vibration per unit volume of the cavity for frequencies in the intervalν and
dν ν+ is given by 

 2
3

8n d d
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πν ν ν=  

Hence the energy density of the black body radiation of frequencies in the intervalν and dν ν+ is 
given by  
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This is the Planck’s formula for the distribution of energy of the black body. This agrees well with the 
experimental results both for the long wavelength and the short wavelength end of the spectrum. 

Note: 

(i)For shorter wavelengths ( 0λ → ), we have 



1e e
hc hc
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Writing
hc b
k
= and8 hc aπ = , we have from the Planck’s distribution law 
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This is Wien’s distribution law. Thus, in the limit 0λ → , Planck’s distribution law reduces to the 
Wien’s distribution law. 

(ii)For very long wavelengths (λ →∞ ), 
hc kT
λ
 . Hence 
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This is the Rayleigh-Jeans distribution law. Thus, in the limitλ →∞ , Planck’s distribution law 
reduces to the R-J distribution law. 

Deduction of Wien’s displacement law from Planck’s law: 

Planck’s distribution law is given by 
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The distribution curve will have a maximum for mλ λ= when the denominator becomes minimum. 

Let 5 e )1(
hc
kTz λλ −=  

4 5
25 ( e 01e ) .( )

hc hc
kT kT

dz hc
d kT

λ λλ λ
λ λ

∴ + −−= =  for mλ λ= . 

Or, 5 (e ) e1
hc hc
kT kT

hc
kT

λ λλ =−  

Or, 1 e
5

hc
kT

hc
kT

λ

λ
− =−  

Or, 1
5

x xe−− = ,          where
hcx
kTλ

= . 



This equation cannot be solved analytically. It can be solved graphically. If we put 1 xy e−= − and

5
xy = , then the point of intersection of the two graphs given by these equations gives the solution 

and it is given by 4.9651x = . 

4.9651
m

hc x
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∴ = =  

4.9651m
hcT

k
λ∴ = = constant 

This is Wien’s displacement law. 

Deduction of Stefan-Boltzmann law from Planck’s law: 

Total energy density of the black body radiation is given by 
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It can be shown that
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Here
5 4

3 3
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The intensity of the black body radiation is given by 

4 4
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Here
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8
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2 5.67 x10
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c h
πσ −= = =  Joule/sec/m2/deg4, known as Stefan’s constant. 



This is Stefan-Boltzmann law. 

 

 

 

 


