
Legendre Equation  

 

The following differential equation is known as the Legendre Differential Equation, after  

the French mathematician Adrien-Marie Legendre, who discovered them in 1782.  

                                 (1 – x2) d2y/dx2 – 2x dy/dx +  y = 0                 ----- (1)          

Dividing by (1 – x2), the equation may be re-written as : 

                      d2y/dx2 – {2x/(1 – x2)} dy/dx + {(1 – x2)} y = 0 

The dy/dx term and the y-term have simple poles at x =  1, hence those are the regular  

singular points of this differential equation.   

However, we wish to solve this differential equation about x = 0, which is an ordinary point. 

So, the simple power series method would have been sufficient, but we shall adopt the 

Frobenius’ method (named after the German mathematician Ferdinand Georg Frobenius). 

According to Frobenius’ Theorem, we can expect a solution of the form :   

           y = Cn x
n + s    dy/dx =  (n + s) Cn x

n + s – 1  

                                                     d2y/dx2 =  (n + s) (n + s – 1) Cn x
n + s – 2 

Substituting in the differential equation :   

          (1 – x2)  (n + s) (n + s – 1) Cn x
n + s – 2 – 2  (n + s) Cn x

n + s +  Cn x
n + s  =  0   ----- (2)          

Since this is an identity, the coefficient of each power of x must separately vanish.  

Equating the coefficient of the lowest power of x, i.e., xs – 2   0 , we have :  

                                                   s (s – 1) C0  =  0                        ----- (3)   

[Contribution only comes from the first term with n = 0] 

                                               s = 0,  or,  s = 1,  or,  C0 = 0     

Similarly, equating the coefficient of  xs – 1   0 , we have :    

                                                   (s + 1) s  C1  =  0                        ----- (4)  

[Contribution again comes only from the first term with n = 1] 

                                               s =  – 1 ,  or,  s = 0,  or,  C1 = 0     

If we wish to keep both C0 and C1 non-zero (we shall require two constants to construct the 

general solution), we are only left with the choice :  s = 0. 

For s = 0, 

our eqn. (2) reduces to :  

            (1 – x2)  n (n – 1) Cn x
n – 2 – 2  n Cn x

n  +  Cn x
n   =  0                          

         n (n – 1) Cn x
n – 2  =   n (n – 1) Cn x

n + 2  n Cn x
n  –  Cn x

n   

                                            =   [n (n – 1) + 2n – ] Cn x
n      

                                                                  =   [n (n + 1) – ] Cn x
n      

Equating the coefficient of xm   0 , we have :  

                       (m + 2) (m + 1) Cm + 2  =  [m (m + 1) – ] Cm
   

                    Cm + 2  =  Cm [m (m +1)  – ] / (m + 1) (m + 2)           ----- (5)        

Eqn. (5) is known as the recursion relation, which allows us to express C2, C4, etc., in terms  

of C0 and C3, C5, etc., in terms of C1. Thus, we obtain two series constituted of the even and  

the odd power terms. For example,  



            C2  =  C0 [
 – ] / 2! ,  C4  =  C2 [23  –  ] / (34) = C0 [

 (– – ] / 4!,  etc. 

            C3  =  C1 [12 – ] / 3! ,  C5  =  C3 [34  –  ] / (45) = C1 [
 (2 – – ] / 5!, etc.      

Thus,  y  =  C0 [1  +  (– /2!) x2  + {(– – /4!} x4  + . . . ]  

               +  C1 [x  +  {(2 – /3!} x3 + {(2 – – /5!} x5 + . . . ].   ----- (6)          

Note that, the constants C0 and C1 remains undetermined. They play the role of the  

two arbitrary constants, which are necessary for constructing the general solution.  

It can be shown, that the series thus generated, converges forx< 1 but not for  

x 1. Now, Legendre Equation usually appears in Physics, from the partial differential 

equations involving the Laplacian operator 2, in spherical polar coordinates. One obtains 

eqn.(1) by substituting : cos = x. That means, we need not bother about the values x > 1,  

but the values x =  1 i.e.,  = 0,  are relevant where finite solutions are necessary. 

The only escape route is to make the series terminate, which is possible if  

Cn + 2 (and the subsequent terms) vanishes for some values of n. This is only possible  

if   is of the form :  l (l + 1), for some positive integer ‘l’. This reduces the series into a  

l-th order polynomial, known as the Legendre Polynomial. 

     One should note that the even series terminates if l is even and the odd one  

if l is odd. So both the series cannot be truncated into polynomials. The one which remains  

an infinite series, still suffers from the convergence problem, hence its coefficient is chosen  

to vanish for maintaining the boundary condition : y is finite for x =  1.   

[For example, if y = Aex + Be– x and we require that y is finite for x  , then we must  

choose :  A = 0.] 

 

Another approach : 

We quickly recapitulate what we learnt about Legendre Differential Equation. 

The following differential equation is known as the Legendre Differential Equation, after  

the French mathematician Adrien-Marie Legendre.  

                                 (1 – x2) d2y/dx2 – 2x dy/dx +  y = 0                 ----- (1)          

We tried to solve it by applying Frobenius’ method (named after the German mathematician 

Ferdinand Georg Frobenius) and looked for a solution of the form : y = Cn xn + s    

This led to :  dy/dx =  (n + s) Cn x
n + s – 1  

                                          d2y/dx2 =  (n + s) (n + s – 1) Cn x
n + s – 2 

Substituting in the differential equation, we obtained :   

          (1 – x2)  (n + s) (n + s – 1) Cn x
n + s – 2 – 2  (n + s) Cn x

n + s +  Cn x
n + s  =  0  ----- (2)   

  (n + s) (n + s – 1) Cn x
n + s – 2  

                                      =  (n + s) (n + s – 1) Cn x
n + s  + 2  (n + s) Cn x

n + s  –   Cn x
n + s     

                                      =  (n + s) (n + s + 1) Cn x
n + s  –   Cn x

n + s     

Since this is an identity, the coefficient of each power of x must separately vanish.  

Equating the coefficient of the lowest power of x, i.e., xs – 2   0 , we had :  

                                                   s (s – 1) C0  =  0                          

                                               s = 0,  or,  s = 1,  or,  C0 = 0     



Similarly, equating the coefficient of  xs – 1   0 , we had :    

                                                   (s + 1) s  C1  =  0                      

                                               s =  – 1 ,  or,  s = 0,  or,  C1 = 0     

We wished to keep both C0 and C1 non-zero, hence, we are only left with the choice :  s = 0. 

This provided us a recursion relation, which relates C2, C4, etc., with C0 and C3, C5, etc.,  

with C1, thus leading to a general solution with two arbitrary constants C0 and C1. 

If however, we set C1 = 0 by choice, C3, C5, etc., will all vanish and we shall only get the 

even-power series. To get another solution, which is necessary for constructing the general 

solution.  

Equating the coefficient of coefficient of xm + s  on both sides of (2), we have :  

                        (m + s + 2) (m + s + 1) Cm + 2  =  [(m + s) (m + s + 1) – ] Cm
   

If we choose s = 1, this reduces to :  

                        Cm + 2  =  Cm [(m + 1) (m +2)  – ] / (m + 2) (m + 3)           ----- (3)        

The choice s = 1 compels us to choose C1 = 0 and hence C3, C5,    = 0.   

Now,  

            C2  =  C0 [2
 – ] / 3! ,  C4  =  C2 [34  –  ] / (45) = C0 [

 (2– – ] / 5!,  etc. 

Note that the relation is identical to the one obtained for the odd coefficients, with the choice  

s = 0.  

Thus,  y  =  C0 [x  +  (2 –  x3 / 3!  + (2 – –  x5 / 5!  +   ]  ----- (4)  

Remember that with s = 1, y  =  Cn xn + 1, now.               

The general solution may now be obtained by combining (iv) with the solution obtained with  

s = 0. 

Descending Series : 

(1 – x2) d2y/dx2 – 2x dy/dx + ll y = 0  

Here we assume the form of the parameter  as lland also assume the solution to be a 

polynomial of order l. So, we take y as :  y = nCn x
l – n   

Orthogonality : 

 Consider two values of the parameter , m(m+1) and n(n+1), for which we shall have 

two different solutions Pm and Pn. So, 

(1 – x2) d2Pm /dx2 – 2x dPm /dx + m(m+1) Pm = 0  ----- (5)   

(1 – x2) d2Pn /dx2 – 2x dPn /dx + n(n+1) Pn = 0  ----- (6)   

Multiply (5) by Pn and (6) by Pm and subtract. We have : 

(1 – x2) (Pn Pm – Pm Pn) – 2x (Pn Pm – Pm Pn) + {m(m+1) – n(n+1)} PmPn = 0   

Note that  :  d/dx (Pn Pm – Pm Pn) = (Pn Pm – Pm Pn), so that we may write : 

           d/dx {(1 – x2) (Pn Pm – Pm Pn)} + {m(m+1) – n(n+1)} PmPn = 0 

Now integrate between the limits  – 1 to + 1 :   

  [(1 – x2) (Pn Pm – Pm Pn)] + {m(m+1) – n(n+1)}  Pm(x)Pn(x) dx = 0 

The first term within square braces vanishes at the limits. So, if m  n, we must have : 

                                        Pm(x) Pn(x) dx = 0  ----- (7)   



You have worked with vectors and you know about ‘dot product’. However, the concept 

of vectors can be generalized much more and also the definition of dot product can be extended. 

In this generalized sense, even a set of functions may be called vectors and their dot product, or 

better call them ‘inner product’, may be defined as :  f1(x) f2(x) dx, within suitable limits. 

In this sense, the above eqn. may be stated as, ‘the inner product of Pm and Pn is zero’, or in other 

words, they are ‘orthogonal’ (which basically means ‘perpendicular’), if m  n.  

Actually this is a property of the so-called Sturm - Liouville Problems. The Sturm – 

Liouville differential equations are of the form : 

                 p(x) d2y /dx2 + p(x) dy/dx  =  q(x) y, 

where ‘’ is called an eigen-value and the solution y(x) is called the corresponding eigen-

function. For different values of , we have different solutions : 

                 p(x) d2y1/dx2 + p(x) dy1/dx  = 1 q(x) y1  ----- (8)   

                 p(x) d2y2 /dx2 + p(x) dy2/dx  = 2 q(x) y2  ----- (9) 

Multiply (8) by y2  and (9) by y1  and subtract. We have : 

  p(x) (y2 y1 – y1 y2) + p(x) (y2 y1 – y1 y2) = (1 – 2) q(x) y1 y2   

Again note that  :  d/dx (y2 y1 – y1 y2) = (y2 y1 – y1 y2), hence :  

                           d/dx { p(x) (y2 y1 – y1 y2) } = (1 – 2) q(x) y1 y2   

If we integrate within such limits where p(x) vanishes then the LHS will disappear and we shall 

have :  (1 – 2)  q(x) y1(x) y2(x) dx = 0.  If  1  2, then  q(x) y1(x) y2(x) dx = 0. We say that 

the eigen-functions corresponding to different eigenvalues are orthogonal. Here of course the 

inner product is defined as :  q(x) y1(x) y2(x) dx. 

 
Generating Function 

 

In Electrostatics, if a charge Q is placed at a point r, the potential due to it 

at r will be :  V(r)  =  Q / r – r =  Q /[ r2 + r2 – 2rr cos½  

                                =  Q /r [ 1 + (r/r)2 – 2(r/r) cos½,

                                 [where  is the angle between r and r.] 

                                =  (Q /r) x [ 1 – { 2(r/r) cos– (r/r)2} ½  

 

If r < r, we can expand V(r) in a binomial expansion as : 

      V(r) = Q /r [ 1 + ½ { 2(r/r) cos– (r/r)2} + (- ½) (- ½ – 1) /2! { 2(r/r) cos– (r/r)2}2  +    

Arranging in powers of (r/r) : 

      V(r) = Q /r [ 1 + (r/r) cos+ (r/r)2 { 3cos2+ . . . ]  =  Q /r (r/r)n Pn (cos)   

As perhaps you can recognize, the coefficients of (r/r)n are the Legendre polynomials. 

Motivated by this result, we introduce the Generating Function for Legendre polynomials as : 

                                         G(t, x)  =  1/(1 – 2tx + t2) = tn Pn (x),  ----- (1) 

where the variable ‘t’ plays the role of (r/r) and ‘x’ that of cos.  

Results derived from this definition : 

       Put xin both sides eqn.(1) LHS = 1/ (1 – t)2 = (1 – t) – 1 = 1 + t + t2 + t3 + . . .    

                                                                       RHS = tn Pn (1) 



                         Equating the coefficients of tn on both sides  Pn (1) = 1 

       2.  Replace t  – t , x  – x  in both sides eqn.(1) LHS  =  1/(1 – 2tx + t2) remains unchanged   

                                          tn Pn (x)  =  t)n Pn (– x)  

                         Equating the coefficients of tn again :  Pn (x) =1)n Pn (– x),  

                         or, equivalently :  Pn (– x) =1)n Pn (x),  since 1)2n = 1. 

This implies that the even order Legendre Polynomials are even functions and the odd order ones are 

odd functions, e.g.,  P1(x) = x,  but  P2(x) = ½ (3x2 – 1).  

     3.  Differentiate both sides of G(t, x) w.r.t. ‘t’ :  

                    LHS  =  – ½ (1 – 2tx + t2)– 3/2 (– 2x + 2t) =  (1 – 2tx + t2)– 3/2 (x – t)   

                    RHS  =  ntn - 1 Pn (x) 

Multiplying both sides by(1 – 2tx + t2) (1 – 2tx + t2)–  ½ (x – t) = (1 – 2tx + t2) ntn – 1 Pn (x) 

x – t) tn Pn (x)  = (1 – 2tx + t2) ntn – 1 Pn (x) 

Equating the coefficients of tn :  xPn(x) – Pn – 1(x)  =  (n + 1) Pn+1(x) – 2nx Pn(x) + (n – 1) Pn – 1(x)  

                                                                        (2n + 1) xPn(x) – n Pn – 1(x) = (n + 1) Pn+1 (x)   

The relation provides an expression for Pn+1  in terms of Pn and Pn – 1. Hence, by knowing the expressions 

for P0 and P1, we can derive the expression for P2 and so on. 

 

Rodrigues Formula 

 

There is yet another approach to obtain Legendre Polynomials, viz. the Rodrigues 

Formula. It defines the polynomials as : Pn(x) = 1/(2n n!) dn/dxn (x2 – 1)n. 

P0(x) = 1/(20 0!) (x2 – 1)0  =  1 

P1(x) = 1/(2  1!) d/dx (x2 – 1) = ½  2x  =  x 

P2(x) = 1/(22  2!) d2/dx2 (x2 – 1)2 = (1/8) d/dx {2 (x2 – 1)  2x} 

                                                       = ½ d/dx {x3 – x} 

                                                       = ½ {3x2 – 1} 

1. To prove that : Pn(– x) =  (– 1)n Pn (x) 

We start by showing that if f(x) is an even function, its derivative is an odd function. 

Example :  x4  4x3  12x2, etc. 

Proof : 

Let f(x) = f(– x)            

Differentiating both sides with respect to x : 

                f (x) =  –  f (– x).      

If we keep on differentiating, we shall find that :  

               f n(x) = (– 1)n f n(– x),   

where f n(x) stands for the n-th derivative of f(x). 

Applying this general result for (x2 – 1)n, which is an even function, we can conclude that : 

              Pn(– x) =  (– 1)n Pn (x). 

            2. To prove that : Pn(1) = 1 

We start  by showing that the lowest power of (x2 – 1) in the m-th derivative (m  n)  

of (x2 – 1)n is : (x2 – 1)n – m . 

   d/dx (x2 – 1)n = n (x2 – 1)n – 1  2x 



   d2/dx2 (x2 – 1)n = n(n – 1) (x2 – 1)n – 2  (2x)2 + n (x2 – 1)n – 1  2 

   d3/dx3 (x2 – 1)n = n(n – 1)(n – 2) (x2 – 1)n – 3  (2x)3 + terms involving higher powers of (x2 – 1) 

                           . . . . . . . . . . 

   dm/dxm (x2 – 1)n = n(n – 1)(n – 2) . . . (n – m + 1) (x2 – 1)n – m  (2x)m + terms involving              

                                                                                            higher powers of (x2 – 1) 

  dn/dxn (x2 – 1)n = n(n – 1)(n – 2) . . . 1 (x2 – 1)n – n  (2x)n + terms involving higher  

                                                                                                          powers of (x2 – 1) 

Setting x = 1, this yields : n! 2n   1/(2n n!) dn/dxn (x2 – 1)n x=1  =  1. 

3. To prove that :  Pm (x) Pn(x) dx [between limits +1 and  – 1]  =  0,  if m  n 
   We drop the consts., because they don’t matter in the orthogonality relation : 

                  Pm (x) Pn(x) dx =  Dm (x2 – 1)m  Dn(x2 – 1)n dx 

                 Let m < n. Take as the first function.  

                 RHS =  [Dm (x2 – 1)m Dn – 1(x2 – 1)n] –  Dm+1(x2 – 1)m Dn – 1(x2 – 1)n dx 

We have shown above that the lowest power of (x2 – 1) in the m-th derivative (m  n)  

of (x2 – 1)n is : (x2 – 1)n – m . Therefore, the lowest power of (x2 – 1) in the expression for  

Dn – 1 (x2 – 1)n is  1  the first term vanishes in the limits x = ± 1. Thus, 

                RHS = –  Dm+1(x2 – 1)m Dn – 1(x2 – 1)n dx 

                        = – [Dm+1 (x2 – 1)m Dn – 2(x2 – 1)n] +  Dm+2(x2 – 1)m Dn – 2(x2 – 1)n dx 

The first term vanishes by the same logic  

            RHS =   Dm+2(x2 – 1)m Dn – 2(x2 – 1)n dx 

                            . . . . . . . . 

                        = (– 1)m  Dm+m(x2 – 1)m Dn – m(x2 – 1)n dx,        

but (x2 – 1)m is an 2m-th order polynomial in x, so D2m(x2 – 1)m is a constant (= 2m!). 

           RHS    Dn – m(x2 – 1)n dx,    

                       =  [Dn – m – 1(x2 – 1)n],  

which vanishes in the limits x = ± 1, as we have argued.  

 

 


