
Vibrations 

Periodic motion: 

When a body describes the same path repeatedly in some definite interval of time, its motion is 
called periodic and the time taken by the body to complete its path once is called its period. 

Example: 

(i) Motion of the earth round the sun is a periodic motion, and its period is one year. 

(ii) The rotation of the earth about its own axis is a periodic motion, period being 24 hours. 

(iii) The motion of minute hand of a clock is periodic motion, period being 1 hour. 

(iv) Motion of a clock-pendulum is a periodic motion. 

Vibratory or oscillatory motion: 

The periodic motion of a body is said to be vibratory or oscillatory when it is reversed in direction 
after a definite interval of time. 

Example: 

The to- and fro motion of a pendulum is an example of oscillatory motion. 

Note: All oscillatory motion is periodic but all periodic motions are not oscillatory. 

Simple harmonic motion: 

It is the simplest kind of oscillatory motion of a body. It has the following characteristics: 

(i) The motion is oscillatory and it repeats after equal interval of time 

(ii) The restoring force acting on the body (or acceleration of the body) is always proportional to its 
displacement (measured along its path) from some fixed point on its path called its mean position. 

(iii) The restoring force on the body or its acceleration is always directed towards its mean position. 

 

Let a body oscillates between two points A and B along the straight line AB. O be its mean position. 
At any instant t let the position of the body is at P so that the displacement is OP x . If the force 
acting on the body at that instant is F then according to the definition of SHM 

F x   

 F mf sx    



where s is a constant and is called the spring constant or the stiffness constant. The negative sign 
indicates that the acceleration is in the opposite direction to displacement. The force acting on a 
body executing SHM acts towards the mean position. That is why it is called the restoring force. 

Example: Simple harmonic oscillator when the amplitude of oscillation is small. 

Definition of few terms of SHM: 

(i) Complete oscillation: 

When a particle in SHM starting from any position in its path comes back to the same path after 
completing the path, we say that it has completed an oscillation. 

(ii) Amplitude of oscillation (a): 

The maximum displacement from its mean position on both sides of the mean position is called the 
amplitude of oscillation.  

Unit- unit of displacement 

(iii) Time period (T ): 

Time taken by the particle in SHM to complete one complete oscillation is called time period of 
oscillation. 

Unit- unit of time (sec) 

(iv) Frequency (n): 

Number of complete oscillations per second executed by an oscillatory body is called frequency of 
oscillation. 

Unit- Hertz (Hz) 

(v) Phase: 

The phase of a vibrating body at any instant determines the state of displacement and motion of the 
particle at that instant.  

The phase of the vibrating body specifies both the displacement and its direction of motion at any 
instant of time. 

(vi) Epoch: 

The initial phase of vibrating body is called epoch. 

The phase changes with time but the epoch remains constant with time. 

 

 

 



Differential equation of Simple harmonic motion (SHM) and its solution: 

 

Let a particle of mass m at any instant of time t has displacement x from the mean position. If the 
restoring force acting on the particle is proportional to the displacement and in a direction opposite 
to it, we can write the equation of motion as 
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where s is a constant, called the stiffness constant or spring constant which is the force required to 
produce unit displacement of the particle from its mean position. 
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where 
s
m

  , called the angular frequency of vibration. 

This is the differential equation of SHM. It is a second order differential equation. 

Let ( ) tx t Ae , where A ,  are constants, be the solution of eq. (1). 
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 2 2 0t tA e Ae     

Or, 2 2( ) 0tAe    

 2 2 0    [∵ 0tAe  for any value of t] 

 i   , where 1i   . 

Hence the solution of eq. (1) may be 1
i tx Ae  or 2

i tx A e  . 

The most general solution of eq. (1) is 



( ) i t i tx t Ae Be   ........................(2) 

where A and B are two arbitrary constants whose values can be determined from two initials 
conditions. 


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A ,Bmay be real or imaginary or they may be complex quantities containing real and imaginary 
parts. 

Since x is real, 

1 1Cos Sinx a t b t   .............................(3) 

where 1a , 1b are real parts of coefficients of Cos t and Sin t . 

This is the real solution of the differential equation (1). 

Writing 1 Cosa a  , 1b aSin we have 

( ) ( )x t aCos t   ...........................(4) 

where 2 2 2
1 1a a b  and 1
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tan b
a
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This is also the solution of eq. (1) in another form. 

Hence the maximum possible displacement in the positive direction of X-axis is mx a  when 

0,2 ,4 ,........t etc     . The maximum possible displacement in the negative direction of X-axis 

is mx a   when ,3 ,5 ,........t etc      . 

Thus the particle oscillates between two points distance a  apart from the mean position. a  is called 
the amplitude of vibration. The same displacement repeats after an interval of time T called the 
time period given by 
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Number of oscillations per second is  
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Energy of a particle in SHM: 

Let the particle of mass m  has displacement x at any instant t. The restoring force (opposing 

displacement) is sx or 2m x . If the displacement is increased by dx , work done against this 
restoring force is .sx dx . 

Hence the total potential energy is  
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Kinetic energy at this instant is 
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Total energy at any instant t is 
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Thus, we see that total energy of a particle in SHM is constant. 

 

 

 


