B.COM

Business mathematics and statistics

Semester III

SETS : A set is a well-defined collection of distinct objects, considered as an object in its own right. The arrangement of the objects in the set does not matter. For example, the numbers 2, 4 , and 6 are distinct objects when considered separately; when considered collectively, they form a single set of size three, written as $\{2,4,6\}$, which could also be written as $\{2,6,4\},\{4,2$, $6\},\{4,6,2\},\{6,2,4\}$ or $\{6,4,2\}$. Sets can also be denoted using capital letters such as A, B, C.

TYPES OF SETS

1) Singleton sets: A set which contains only one element is known as Singleton set .

Examples:

1) If $P=\{x \mid x$ is a prime number 10 and 12$\}$ then $P=\{11\}$

As we observe that there is only one element in set P.
$n(P)=1$
so set P is a singleton set.
2) If $A=\{x \mid x \notin 3<x<5\}$ then
$A=\{x \mid x \notin 3<x<5\}$
$A=\{4\}$

As the set A contains only one element so set A is a singleton set.
2) Finite sets: The sets in which number of elements are limited and can be counted, such sets are called finite sets.

Example :

If $A=\{x \mid x$ is a prime number, $x<10\}$ then $A=\{2,3,5,7\}$

Here then there are only 4 elements which satisfies the given condition.

Thus, set \mathbf{A} is a finite set.
3) Infinite sets: The sets in which number of elements are unlimited and cannot be counted, such sets are called infinite sets.

Example :

set $C=\{10,20,30,40,50,60, \ldots\}$

As the number of elements in set C are infinity (uncountable).
Thus, set \mathbf{C} is an infinite set.
4) Empty set : A set which has no element in it and is denoted by ϕ (Greek letter 'phi')

Thus $\mathrm{n}(\phi)=0$

It is also known as null set or void set .

Example :

set $A=\{18<x<19\}$

So between 18 and 19 there is no element.

Thus, set A is an empty set.

SUBSET:
A is a subset of B when every member of A is a member of B.

Example: $B=\{1,2,3,4,5\}$
Then $A=\{1,2,3\}$ is a subset of B
Other subsets of B include $\{2,3\}$ or $\{1,4,5\}$ or $\{4\}$ etc...
But $\{1,2,6\}$ is NOT a subset of B as it has 6 (which is not in B)
Definition: A Universal Set is the set of all elements under consideration, denoted by capital U. All other sets are subsets of the universal set.

Example 2: Given $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,5,6\}$ and $B=\{3,9\}$, draw a Venn diagram to represent these sets.

OPERATION ON SETS

Union of Sets

Let $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$. Then, $A \cup B$ is represented as the set containing all the elements that belong to both the sets individually. Mathematically,
$A \cup B=\{x: x \in A$ or $x \in B\}$

So, $A \cup B=\{2,4,6,8,10,12\}$,
here the common elements are not repeated.

Properties of $(A \cup B)$

- Commutative law holds true as $(A \cup B)=(B \cup A)$
- Associative law also holds true as $(A \cup B) \cup\{C\}=\{A\} \cup(B \cup C)$

Let $A=\{1,2\} B=\{3,4\}$ and $C=\{5,6\}$
$A \cup B=\{1,2,3,4\}$ and $(A \cup B) \cup C=\{1,2,3,4,5,6\}$ $B \cup C=\{3,4,5,6\}$ and $A \cup(B \cup C)=\{1,2,3,4,5,6\}$
Thus, the law holds true and is verified.

- $\mathrm{A} U \phi=\mathrm{A}$ (Law of identity element)
- Idempotent Law $-\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
- Law of the Universal set (\mathbf{U}): ($\mathbf{A} \mathbf{U} \mathbf{~})=\mathbf{U}$

Intersection of Sets

An intersection is the collection of all the elements that are common to all the sets under consideration. Let $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$ then $A \cap B$ or " A intersection B " is given by:
"A intersection B " or $A \cap B=\{6,8\}$

Mathematically, $A \cap B=\{x: x \in A$ and $x \in B\}$

Properties of the Intersection - $A \cap B$
The intersection of the sets has the following properties:

- Commutative law $-\mathbf{A} \cap \mathbf{B}=\mathbf{B} \cap \mathbf{A}$
- Associative law - $(A \cap B) \cap C=A \cap(B \cap C)$
- $\quad \phi \cap A=\phi$
- $U \cap A=A$
- $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$; Idempotent law.
- Distributive law $-\mathbf{A} \cap(B \cup C)=(A \cap B) U(A \cap C)$

Difference of Sets

Difference of two sets A and B is the set of elements which are present in A but not in B. It is denoted as A-B.

Let $A=\{3,4,8,9,11,12\}$ and $B=\{1,2,3,4,5\}$. Find $A-B$ and $B-A$.
Solution: We can say that $A-B=\{8,9,11,12\}$ as these elements belong to A but not to B $B-A=\{1,2,5\}$ as these elements belong to B but not to A.

Let, $A=\{1,2,3,4,5,6\}$ and $B=\{2,4,6,8\}$ then $A-B=\{1,3,5\}$ and $B-A=\{8\}$. The sets $(A-B),(B-$ $A)$ and $(A \cap B)$ are mutually disjoint sets; it means that there is NO element common to any of the three sets and the intersection of any of the two or all the three sets will result in a null or void or empty set.

Complement of Sets

If U represents the Universal set and any set A is the subset of A then the complement of set A (represented as A^{\prime}) will contain ALL the elements which belong to the Universal set U but NOT to set A.

Mathematically, $(A)^{\prime}=\mathbf{U}-\mathbf{A}$

Alternatively, the complement of a set A, A^{\prime} is the difference between the universal set U and the set A.

Properties of Complement Sets

- $\mathrm{A} \cup A^{\prime}=\mathrm{U}$
- $\mathrm{A} \cap A^{\prime}=\phi$
- De Morgan's Law $-(A \cup B)^{\prime}=(A)^{\prime} \cap(B)^{\prime} \mathrm{OR}(A \cap B)^{\prime}=(A)^{\prime} \cup(B)^{\prime}$
- Law of double complementation: $(A)^{\prime}=\mathrm{A}$
- $\emptyset^{\prime}=U$
- $U^{\prime}=\phi$

Solved Examples For You

Question 1: Let $A=\{1,3,5,7\} B=\{5,7,9,11\}$ and $C=\{1,3,5,7,9,11,13\}$ prove that:
$(A \cap B) U(A \cap C)=A \cap(B U C)$

Answer : B U C $=\{1,3,5,7,9,11,13\}$
$A \cap(B \cup C)=\{1,3,5,7\}$
Hence, $A \cap B=\{5,7\}$
$A \cap C=\{1,3,5,7\}$
$(A \cap B) \cup(A \cap C)=\{1,3,5,7\} \quad$... $\{$ Hence proved $\}$

Question 2: If $A=\{1,2,3,4\}$ and $U=\{1,2,3,4,5,6,7,8\}$ then find A complement (A^{\prime}).

Solution :

$A=\{1,2,3,4\}$ and Universal set $=U=\{1,2,3,4,5,6,7,8\}$

Complement of set A contains the elements present in universal set but not in set A.

Elements are 5, 6, 7, 8.
\therefore A complement $=A^{\prime}=\{5,6,7,8\}$.

Question 3: If $A=\{1,2,3,4,5\}$ and $U=N$, then find A^{\prime}.

Solution :

$A=\{1,2,3,4,5\}$
$U=N$
$\Rightarrow U=\{1,2,3,4,5,6,7,8,9,10, \ldots\}$
$A^{\prime}=\{6,7,8,9,10, \ldots\}$

Question 4: $A=\{x \mid x$ is a multiple of $3, x \notin N\}$. Find A^{\prime}.

Solution :

As a convention, $\mathrm{x} \notin \mathrm{N}$ in the bracket indicates N is the universal set.
$N=U=\{1,2,3,4,5,6,7,8,9,10,11, \ldots\} A=\{x \mid x$ is a multiple of $3, x \notin N\}$
$A=\{3,6,9,12,15, \ldots\}$

So, $A^{\prime}=\{1,2,4,5,7,8,10,11, \ldots\}$

C.U QUESTIONS AND ANSWERS

1. If $A=\{1,2,3,4,5,6,7,9,11,13,15\}$ and $B=\{2,4,6,8,10,12,14,16,18\}$, find $(A-B) \cup(B-A)$, $(A-B) \cap(B-A)$

SOL: $A-B=\{1,3,5,7,9,11,13,15\}$ and $B-A=\{8,10,12,14,16,18\}$

So , $(A-B) U(B-A)=\{1,3,5,7,9,10,11,12,13,14,15,16,18\}$

And $(A-B) \cap(B-A)=\phi$
2. If $A=\{1,2,3,4\}, B=\{3,4,5\}, C=\{1,4,5\}$ Verify the following statement:
$A-(B \cup C)=(A-B) \cap(A-C)$

SOL: $B U C=\{1,3,4,5\}$
$A-(B \cup C)=\{2\}$
Again $A-B=\{1,2\}$ and $A-C=\{2,3\}$
$(A-B) \cap(A-C)=\{2\}$
$A-(B \cup C)=(A-B) \cap(A-C)$
3. If $A=\{x: x$ is an integer and $1<x<10\}$ and $B=\{x: x$ is an integer multiple of 3 and 5 and $x \leq 30\}$.Find $A \cup B, A \cap B,(A-B),(B-A)$

SOL: $A=\{2,3,4,5,6,7,8,9\}$ and $B=\{3,5,6,9,10,12,15,18,20,21,24,25,27,30\}$

AUB $=\{2,3,4,5,6,7,8,9,10,12,15,18,20,21,24,25,27,30\}$
$A \cap B=\{3,5,6,9\}$
$A-B=\{2,4,7,8\}$
$B-A=\{10,12,15,18,20,21,24,25,27,30\}$
5. If $\mathrm{U}=\{1,2,3,4,5,6\}$ be the universal set $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are three subsets of U where $\mathrm{A}=\{1,3,4\}$ and

- $B \cup C=\{1,3,5,6\}$. Find (i) $(A \cap B) \cup(A \cap C)$ and (ii) $(B \cup C)^{\prime}$.

Solution (a) $\{1,3\}$, (b) $\{2,4\}$
6. (a) Given $\mathrm{A}=\{2,3,8\}, \mathrm{B}=\{6,4,3\}$, find $\mathrm{A} \times \mathrm{B}$.
(b) Find the power set of $\{1,2,3\}$.

Solution (a) $\mathrm{A} \times \mathrm{B}=\{(2,6),(2,4),(2,3),(3,6),(3,4),(3,3),(8,6),(8,4),(8,3)\}$
(b) $\{\{1\},\{2\},\{3\},\{1,2\},\{3,1\},\{2,3\},\{1,2,3\}, \phi\}$
[2003]
7. Using set theory find the HCF of the numbers 12 and 15 . Solution Let A and B be the two sets,

Then $\begin{aligned} A & =\{1,2,3,4,6,12\} \\ & B=\{1,3,5,15\}, A \cap B=\{1,3\}, \text {, The highest is } 3 .\end{aligned}$
Then the HCF of 12 and 15 is 3 .
Then the HCF of HCF of 21,45 , and 105 .
8. Using set operators, find question 7).

Solution 3 (Similar to question 7).
9. If $A=\{1,2,7\}$ and $B=\{3,5,7\}$ are the subs $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

$$
\begin{aligned}
& \text { If } \mathrm{A}=\{1,2,7\} \text { and } \mathrm{B}=\{3, J, \\
& S=\{1,2,3,4,5,6,7,8,9,10\} \text {, then show that }(\mathrm{A} \cup \mathrm{~B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\text { Solution } \mathrm{A}^{\prime} & =\{3,4,5,6,8,9,10\} \\
& \mathrm{B}^{\prime} \\
& \left.\mathrm{A}^{\prime} \cap 1,2,4,6,8,9,10\right\} \\
& \mathrm{B}^{\prime}=\{4,6,8,9,10\} . \\
& \text { Again, } \mathrm{A} \cup \mathrm{~B}=\{1,2,3,5,7\} \\
& (\mathrm{A} \cup \mathrm{~B})^{\prime}=\{4,6,8,9,10\}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} .
\end{aligned}
$$

$$
\begin{aligned}
& (A \cup B)^{\prime}=\{4,6,8,9,10\}=A, B, \\
& =\{a, b, c, d\}, A \cap B=\{b, c\}, A \cup C=\{a, b, c, d\},
\end{aligned}
$$

10. If $A \cup B=\{a, b, c\}$, then find A, B and C
and $A \cap C=\{a, b, f \cup B) \cup(A \cup B)=A \cup(B \cup C)=\{a, b, c, d, f\}$
Solution Let $U=(A \cup B) \cup(B)$

$$
A \cap B=\{b, c\}=\{b, c\} \subseteq A
$$

$A \cap C=\{a, b\}=\{a, b\} \subseteq A$
$\therefore \mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Again, $A \cap B=\{b, c\}$, then $\{b, c\} \subseteq B$
$A \cup B=\{a, b, c, d\} . B=$
$A \cup B=\{a, b, c, d\} . . B=\{b, c, d\}$
and $A \cap C=\{a, b\}$ then $\{a, b\} \subseteq C$ again $A \cup C=\{a, b, c, f\} \therefore C=\{a, b, f\}$.
$B=\{p, q, r, f), A \cup C=\{q, r, s, f\}$
11. If $A \cup B=B=\{q, r\}, A \cap C=\{q, s\}$, then find the set A, B, and C.
$A \cap B=\{q, r\}, A \cap C=\{q, s, q, C=\{s, q, f\}$.
Solution $A=\{q, r, s\}, B=\{p, r\}, C$
12. Find the power set of the set $\{2,4,6\}$.

Solution $\{\{2\},\{4\},\{6\},\{2,4\},\{4,6\},\{6,2\},\{2,4,6\}, \phi\}$.
13. If $A=\{2,3,4,5\}, B=\{1,2,3,4\}$. Show that $B-A \neq A-B$.

Solution $\mathrm{A}-\mathrm{B}=\{5\} \mathrm{B}-\mathrm{A}=\{1\} \quad \therefore \mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$.
14. If $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,11,13,15\}$

$$
\begin{aligned}
& A=\{1,2,3,4,5,0,1,8,14,16\} \\
& B=\{2,4,6,8,10,12,1,1
\end{aligned}
$$

Show that $A-B \neq B-A$.
Solution $\mathrm{A}-\mathrm{B}=\{1,3,5,7,9,11,13,15\}$
$B-A=\{8,10,12,14,16\}$
$\therefore \mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$.

THE END

