
www.easybiolgachassuom
$5^{\text {th }}$ Sem Hons. (CC-12)
Sudeshna Ghoshal
Dept, of Zoology, VJRC.

GENIC BALANCE THEORY

C.B BRIDGES (1921)

CHROMOSOME THEORY OF SEX DETERMINATION

$>$ Male and females have 2 different sets of chromosome -
\square Autosomes (A)
\square Sex chromosomes (X, and Y).
$>$ Generally in Females, sex chromosomes are homomorphic(eg. $X X$ if X is designated as sex chromosome).
$>$ While in Males these sex chromosomes are heteromorphic, (eg. XY, where both are designated as sex chromosome)

- [except in Birds where females are heteromorphic and males are homo-morphic]

THE RESULT from EXPERIMENT of nondisjunction(1916)

The example below suggested that in Drosophila Y-chromosome does not help in determining sex.

2A + XX (Female) \quad 2A + XY (Male)
(non disjunction of X chromosome in female)
male gametes

> Y chromosome does not carry any sex determination factor,
$>$ Presence of 1 or 2 X-chromosome is more important for Drosophila sp

GENIC BALANCE THEORY OF SEX DETERMINATION

$>$ C.B. Bridges 's experiment demonstrated that Y-chromosome is not important for determination of sex in Drosophila, again it did not indicate whether Xchromosome alone takes part in sex determination or Autosomes play any role in it.
$>$ During experimentation in Drosophila he found individuals having 2 X chromosomes but were intersexes. And each of these intersexes have extra set of Autosomes (A) indicating that autosomes definitely play some role ion sex determination.
$>$ Bridges in the year 1922 came across certain Drosophila individuals which were Triploid females and has 3 sets of chromosomes (3A + XXX). These triploid individuals were found to be normal females.
$>$ He crossed them with normal diploid males $(2 A+X Y)$. From this cross he found normal diploid males and females, superfemales, supermales and intersexes.
$>$ The presence of Triploid intersexes $(3 A+X X)$ proves that autosomes also play role in sex determination.

THE EXPERIMENT

$A+2 X$
2A + XXX
Super Female
X/A ratio=1.5
2A + XXY
Normal Female
X/A ratio=1.0

FINAL INTERPRETATION

According to this theory the ratio between number of Xchromosomes and number of complete sets of autosomes will determine the sex - i.e. a balance between autosome and sex chromosome.

The X-chromosome believed carry female tendency genes while autosomes carry male tendency genes.
X/A ratio determines maleness and femaleness in Drosophila.
If $X /$ A ratio <0.5 than individual will be -
Metamale/Supermale (Sterile)
$=0.5$ than individual will be Normal male (Fertile)
>0.5 and <1.0 yield Intersex/ Gynandromorphs (Sterile)
$=1.0$ than individual will be Normal Female (Fertile)
>1.0 than individual will be Metamale/ Super-female (Sterile)

BRIDGES' S PROPOSAL FOR DROSOPHILA IS .

GIENIC BBAUANCIE TIBIEOIRIY:

e It states that sex of an individual is determined by a ratio called sex index.
e Sex Index $=\underline{\text { No. of } X \text { chromosomes }=\underline{X}}$ Autosomal sets A
© Autosomal sets \longrightarrow diploid or triploid or tetraploid.

(c) Genic Balance System

a This system was developed by Bridges (1922) in Drosoplaila.

- According to this theory "the sex of an individual is determined by a balance between the genes for maleness and those for femaleness present in the individual,"
SUMMARY
- Genic balance theory states that sex determining genes are present on both X chromosome as well as autosomes.
- The male sex determining genes are present on autosomes and female sex determining genes on X chromosome.
- The sex expression is determined by the balance of genes on autosomes and X chromosome.
- In other words, the expression of sex depends on the ratio of X chromosomes to that of autosomes. This ratio is represented as X/A ratio.

