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CRISTAL STRUCTURE F POTASSUM CHLORDE

The powder pattern. of KCl1 is shown in Fig, 3.17.1. Au first glance the pattern
looks like that of a primitive cubic-lattice since there are six lines followed by a
gap. However, KCl has a face-centred cubic lattice like that of NaCl. The

resemblance fo a primitive lattice is a consequence of the fact that K* ions and
CI” ions have the same number of eléctrons and ‘thus have the same scattering
power for X-rays. The unit cell of the apparently primitive lattice formed by
-considering K* and CI™ ions as 1dent1-::al has half the 5dge: length of the actual
face-centred unit cell.

Another ﬂxample exhibiting this type of bchaviqur is provided by RbBr
in the series LiBr, NaBr and' RbBr. All these molecules have face-centred
lattices. However, X-ray diffraction indicates that RbBr has a simple cubic

lattice. This results from the fact l;hat Rb™ and Br hava the same number of
electrons.
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Fig. 3.17.1 Diffraction
pattern (only schematic)
of potassium chloride




Ca) Since density of the corystal.

and

p:

At v

o

PN

o

theraefore .,

-2{_'9'5- D4 o mol 1)

{-::11:}.3 Fom o) (6.022 = 1022 mol 1)

= 3.139 = 102 cmn =

R

—
—

_er
~2

o r

r

{h1+kz+11}1&_

313 9 prn

3139 prin

o et

1_<31 <%
3139 pan

1. 732

—2.:12_.'!3]__::11:1

= 181.2 prr

[.F:"N.H..

Nowws, thhe mumber NV of atoms per unit bodvyv-centred cubic cell
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Since density, o — a3 therefore, DNy = ———
: ‘“'a - - a;a'p

Sul:l-stl.mu:ng the values, we have

- _1 - - - )
N, = U74.55 g mol 1) = 6.03 x 1023 mol~!
(29 082 » 107 crm)” (1.986 3 gcm )

TTse the -::la.ta. g;l.vm below o fizmyd the type of cubic latdoe o which the -:.'::l_-:_r.rsta]_ belongs:

'I -

- ) Fe . . : ) O 8 - Pd
- .::u"prl:l _ 286 i - :31:1;._ - ; - 388
ol cm Y ' T.BS 5.96 - B B =
AL B =1 s VN

N o, 0 = . Therefore, N =

TNV AL

Thus, wwe hawve o . .

(7.86 g cm =) (2.86 % 107°% cm)? (6.022 =< 1022 mol—1)
(S55.85 o mol™1)

Hence, the cubic lattice of Fe is bPodyv-cerntred. )

(5.96 g cn =) (3.01 = 107° cm)® (6,022 »x 107 mol™1)
(S0.9< & mol 1)

Hence, the cubic lattice f-::-r WoAs bady{entred.

(lllﬁgcm FP (3. BR »x 1077 cm)” {-5022::—::1(}23 111-::-1"]}=412:4

(1064 g mol—" ) - ‘

Hence, the cubic lattice for Pd is face-centred.

= 1.983 =2

For Fe o o=

For V N =

For Pd N =



X -ray analysis shows that the unit cell length in NacCl is 562.8 pm. Calculate the density
yvou would expect on this basis. Avogadro constant is 6022 =< 107 I::_u:rl_]-

. i DN
SInce density o = = . therefore, we Zet
XN

o = D8-S & 1) —2 179 = cimy =
(S.628 > 107 cm) (G022 » 1077 meol 1) )

The X -ray powder patterm for molybdenum has reflectons at & —= 20.25°, 29 _3.0°, 36.82°,
A43F3 . B1L<, 50,699, S8.807, 06.30° and other larger angles when K, N-rays from TCu are usced
(A =— 154 pronmd. }

Ca) "“What is the tywpe of cubic crystal formmed by Mo

(b VWhat ids thhe length of a side of thhe vendatc cell?

(<) WWhat is the density of molybdenum?
(a) Type of cubic crystal The diffraction pattern is The above reflection pattern corresponds to body-centred cubic crystal. The primitive
g - sin @ sin? @ one is eliminated from the fact that the reflection corresponding to 7K (which in the present

- case is 14 K) is present.
2025:’ U1346 ﬂ 3.119 8 or 1 x ﬂllg 8 or 2 x 0.059 9 = 2K {[]} Edgg Egngf}l gf unit cell We have

2930 0489 4 0.239 5 or 2x0.1198 or - 4 x 00599 = 4K 42 : F
o - : _ K=— Therefore, 4= ——
36.82 0.599 0 0.358 8 oo 3x01198. or 6x 00599 =6K 4a> WK
4_3:1.810 0.692 3 0.479 3 or 4 x01198 or 8 x 00599 =8K Substituting the values, we have
.50.69° 0773 6 0.598 4 oo 5x0.1198 or 10 x 0.0599 = 10K 154 pm 154 pm 4147
. . 1= T = , TTk
58.80°  0.855 4 0.731 & or 6x01198 or 12 x 0.0599 = 12K 2x/00599 2x0.2447 pm
66.30° 09157 (0.838 3 or TxQlI98 or 14 x 0.0599 = 14K (c) Density of molybdenum We have
- NM
Densit =
ensity p- 2N,

Substituting the values, we have

_
. QOSgm) 1o o
- (3.147x 107 em)® (6.022 x 107 mol ™)




The unit cell of aluminium is a cube with edge length 4035 p]:n,. The EIE:]lSlI’.}F of aluminium
is 2.70 g cm?. What is the st[u{:mre of aluminium crystals?T

o | ln-ng.—:-E: density

VAL 0 oexs N
= . therefore M= 2
= T IV o A
Substituting the Fiven wvalues, we et
{2_?-:1 o ) (< 0SS > 10 cm)” (6,022 > 107 mol— 1)
(26.98 o mol ') -

Thus, thhe amit cell of<aluminiam is face-centred cubic.

A = = ~

A substance forms face-centred cubic crystals. Its density is 1.984 g cm— and the length
of the edge of the unit is 630 pm. Calculate the molar mass. -

¥

. Fatnt rex” M
Since o = — . VAEes Eresl NAa = —
- | - "= §
e e VY FaY
Substituvutinge the wvalues, we hawve
- s —3. e T s . —;q R :_'. P il B | 7 :__": — I. ==
A (1. 98494 o Ccrry PSS 3I > 140 T ) (S . O22 > 140 rracnl )

= F<4 69 o ol !

From the fact that the length of the side of the unit cell for lithium is 351 pm, calculate
its atomic radius. Lithium forms body-centred cubic crystals.

In body-centred cubic crystals, atoms touch one another along the cross-diagonal of the Substituting lhﬂ value of a, we have
ciibe. |

| ~ ﬁ(‘SSlpm}
T dr=y3 or r:% | i r= 4 =151.9 pm




Magnesium oxide (Af = 40.0 g mol ') is cubic and has a density of 3.620 gfcmic. An
MN-ray diffraction diagram of MgO powder has lines at values of -sin & = 0.399, 0.461,
0652, 0764, O798 and 0.922. (a) Index the patterm and determine the type of cubic
structure, (b) Calculate the wawvelength of X-ravs used. Assume that the number of W% Fel )
units per unit cell is the smallest consistent with the structure type. '

(a) Twpe of cubic structure

sin & - 0.399 0.461 0.652 . 0.764 0. 798 0.922

sin?® & O.159 2 0.212 5 04250 - 0583 7 O.638 B 0.850 0O
Obwviously the cubilic structure is neither primitive nor body-centred since for them the
difference between any two successive wvalues of _s..in1 & is constant. The diffraction
pattern for the face-centred cubic lattice has sin? @ wvalues at 3K, 4K, BK, 11K, 12K,

16K, .. .. cormresponding to the planes (111), (200), (220, (311), (222), (400), ...
respectively. This pattern is satisfied by the above walues of sin® & with
K = 0,052 9. Thus, magnesium oxide has a face-centred cubic lattice.
Cx)y Wezvelarmragrfe «oof N - rFrezys pose=od
Giwven thhat o = I 620 & cim o
For & face—centraedd owumnbric latiindese, rr =— =1 The:r-e:f-c:-ra,
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o R <Ry o rrneslT ) _ ‘S
[;:-NA {(3 62 &= e ) (G022 = 1O mo 1::-)
— A1 BT > L0 cm
Soaccording o BragssTs aeguation

FrA =— 2 o sazu
P - - Ford ) : -
(=) o A = 2| — |sitn e = 2, ., Sl G = 2 Sizy &
e N e Y =
Takbimezy siyn & — D399 cormmrespormcding o thhe (11 170 plamnaes,. we hhawe
' 4 _ [2c4.187 10" cad

= :r.:n:}_z-ég-;r = 1. 929 5 10 " crmy — 1929 pin



Elemt Caposcitie=s of Rlomatormdc Crystals
at constanmt pressure, the maelas bheat

Emm IE19 the French physicises Delongs and Potit fowund thao,
:3]:-3:11.-_1; At cormstarnst woloaree of meost ol thee saolicd -:-:1131::52:11:5 AL FO-OErE EEITypeeralirre wweass Eivern boy
- - . B = L

o Cgr == & cal B~ mol—1 -
Im ander o accoaant for this valboe, oo theories of heatr capacities woers develaoped—ahe first by Adberi
Einstcin in 1907 and the second which is a mmodification of the Einstein theory) by Poter Delbye in
1912, .

Einstesin made the following assuasmmptiomns i

1. The Einsteio Theory of Eeaft Coapacities.
comstmecting his tiheeory of bheat capacities of meooso@aboamis: Gy stals .
TEwe  abrrres il = crystal Jattice wmndesrpgor s=rmeall aoscillations wibbratioms)d ab-ouar theeir equEiliibrinasme
fdleal cryseal can be considerasd as @ sysperm of NN o moo—imreractinge particles

1.
canmfigueratioms . Enn fact, =T
F. e | SOerrs ) . -

ZF . Each aposm wibrates indepoerndentiy oaf the others and bas thres independent wibratiomnal b groes
af frecedborm. Fhooaes, e -::rjrsl::a.! mTemy e meatecd @@= = 5_1.rs.te:|:n -:lf 3-.-"'-" fryadleyrerpderrr «aryal i srirreeed sfrearfed e

Ty e .:-s-c-j.lm -
2. There are §a |=I.-I=|:l_'l:'-|:ll:l:1li-l:: trarnslaticonal or rotaticomal modess of motiom §o = T ECER T s el
Ll sime -E.:s-si.::l::t]_:l-tmﬂs e a.n.-l.—l 3— Eae mﬂl_,ﬂ;r v"l:rra.tlﬂ::l.al partiticomn Ffurncricoom oF e -|:=.—_1.r!=l:=a_'|. casn e wrrintea

s )
l:e?-..—jh —— {q-..-:..}“ {Fr-un:l.-rl Eg. 254k - - - RO
= _ -
or - I Pen — IOV EB Gem = —%—TF- — 3NEnCl — e T=1Ty - 2T
is T

g = /i wiwerns w

wwrhnere Sy is I:J.-u: -l:hm'.n.l::t-l:ristic Fimstein gonmpeoeratare for wilhracioos .
wibratiorsal fregpneersscss of fhe oscillator. Thes, fhe imnermoal emnergsy of am ideal BEinscsin ocrystal is given

b
- L = kr:[ﬂtﬂﬂ-rm]?" %I‘u‘;ﬁv + Eg;f__gfl _ 5 ' ) | x--CZO8Y
o Li — &g = 3T Eﬂfff‘ri:_ " S——— _ - D)
wwhere L dis the -z-e:m—]_:-m:u: SRRy = = M = S REE). Hence, the molar heat capacityw ) )
. “-{am}_

— E:"'E = e T _

Experimentally it is fouamnmd 'r_‘h.af. at termpeerannres approachime oo, Oy approaches oo amd i thee
Tt of high ternmpeeratures . O appooaches the Dulong - Petit waloee of 38 (f.e.. = 6 cal E—f el — %
Einszein’s theory predicis these limitinge values of Oy guite soeccessfoully. Thas, as

T — 0, e9='T _ ] = &e'7T o ghat SO
Limit = 3R (STF %= 7 = 0 - 3O
MApain. as T —» oo eT= T ) (B Ty so that
= = [ -
B iirriie o = SR{—E = = &
et v T Al + @ FT — L= - = - (3OSD



Thee abteovwe results are flastcrabesd im Fig. 17 Torwr -

a oumber of motallic and won—aeeralilic crystals.

Einstcin®s theory. howewver, 1s mot sncoessnl in
predicting the - values in the bower and irrerrrpeckiace |
temperature ranges ; the wvaloes predicred by it arnc i
lower thhan those acaally obserwed.
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IDNDebwe awoideoed 1heE mrost Soriomes mssumrpwtiome o ke
Einstcin theory, mamnmeely., thar the wvibrations i =
crystal lattice are independcont. BFle recopmi=ed that
the finterapormic Fforces im @& orystal arne wvery SicomE
arndd hences thes abomms meay mot bhe aeancd as e A
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independent. Debye assumed that the crystal behaves like a huge molecule wherein the motion O any
one atom -affects the motion of the neighbouring aroms. The oscillations or mormal modes of wibration
which characterize the meotion of the crystal as a whole, hawve long wavwve lengihs compared with the
lattice spacings. The various wibrational modes are distinguished by their unigue frequeency. -Debye
further assamed that the properties of the crystal could be determined from a superposition of
cantributions due o esach possible vibrational meodle, ratfier than by summing the comributions made
by individual atoms. Thus, the determinarion of the ::r].rgjt-a.:[ properties depends upon determining the
possible frequencies for the wibrational modes. )

In order to. dewermine the normal wvibrational freguencies, " Debye assumed them o be eqguivalent

o the fundamental vibratiomal frequencies which are induced in an elastic solid of fimed boundaries.

The oscillations represent acoustic standing wawves in the clastic meedium. We can also remark thar

cach normal mode of vibration is cguivalent to the motion of a hypothetical phonon (the phonon is o
acoustics whai the photon is to electromagnetic radiatiom}.

The next task is to determine the ffrequency distribution of the normal modes. In a crystal
containing W atoms, the muwmber of degrees of freedomn is 3N, Subtracting the 3 translational degrees
of freedom and the 3 rotational degrees of freedomm, the number of vibrational degrecs of frecdosn of
the crystal is 30 — 6. Since, however, N Is wory large, to an approximation, there are 3N vibrational
degrees of froocdorn. Therefore, Debye assumed the avomic crystal to have 3/ normal vibrations, ceaci
having a uniguoe frequency'.

- e oms g W = o g :"il.r.

. —



Suvssurndnge & COoOrrbimasDAaRs distribution of freguencics, the freguency dismibution funcricon is defined by
- AW = v v IO

wivere g is the n'l.u-rlh-E:l.' of mocmial mmodes of wibration
in the frequency ramge from v o ¥ 4. [t is. thuas,
recpuinecd that )

]';"'_,n:v}d-.r —_ A - AIOS)

wwhere Vo (O ¥nax) S the maxizmmum possible orecillation
frequency. Fig. 18 shows the plots il Foogueemc 5T
distribution of normal modes im a crys=stal Ffior boailh
ithe Einstcin and the Debye theories. The area wumnder
cither curve between any two walues of v is it
_ni:f:j“:f_i:f 1.-'12::13!1!:!!-1.5!] Mlllm ::'Ell:"?:; im che cxystal Fig. 18. Freguency distributicn in @ Delhge salid.

FREQUENCY BETWEEN

M-

NUMBER OF STATES WITH

The partition function for the systemm of the Debye ascillarvors is given by
F = q—{-b-:. jﬂl":}q{vl :..irl:""! :.__r, "E"::'l'ru. :..-rl:"lil-:'

o ) - A3
or in & = Ef{"ﬂl I vy D - AT
=1l
As a resait of the continuity, the suomuona rion may be replaced by integration so that
) m @ = [ £ovdin govdy ) ' --(308)
where g(w) is the partition funciiomn of the oscillaror defined by
o~ 12T
-E'l:_-"-'} = Wy — L — E_&"H:' ar - O
Debyve psed the Rayleigh-Jeans relarion for the distribution function, wiz.. - - -
FOidy = v tadfw ) e IR
where the constant ¢ is deermined froon the resiriction that oo B
"o . . e -1 — __1__ o
_Fn Fiviay = e [Cviav = Zowvh = 3N 3D
“Thus, e = GNF Ve T 312 -
Hence, Eqg. 310 is written as
- Fividy = (G vh 3 vidv )

B Thus, the partition function of the Debye crysial becomes



which heelps us o obtain

CeNET [ Faw S KT bawr 2 : .- :
rr = = n d. o . I '1: -+ :I-._- e ) L AZ1S)
] _1.3--_ o -El'ﬂlfl":r — 1 2T B - B
g _ SNFRv oNET [ o S KT - .2 -
) ' T B - w3 o | expirfavikeTy — L | v
Pulting & — Mk and So = fAvpEk, where & is called the charactecistic Debye temperatsre of the
crystal, we aobiain
3 - -
SR, T J‘E*:r-rr ey ST { } 1
Lf = —'—'-E'-'-— = S@RT I:__EJE ] o EE‘-"T — .-.. ..:3 5__:

The integral inm Eg. 216 can b evalvated numerically. It is conveniemnt o defines e Behye
Fuanctian as .

3 = z7dlz
ENxd =T 3 Jax _ 3 . ) - 31T
whernes r = &4 amd =z o= (=T ol

(The Debyve function is tabulated in standard books on Statistical Thermodynamics.) I'he energy
of the crysial becomes

. U = 9RGE + IRTDN S0/ Ty --.{3131_
le'ﬁ::r::nj:lﬂl:ll:].g L‘.l {EE..-"'T_:I and then carrying ous the integration b}' ;parts we obtain ] .
=] = IS, ST
Cy = 3RD E'IE' ] + 3Rr—-—[£:{—£’—]] = 3R [-u:r [ "] = 2 — ] ) L)
At high temperatures, . ) i
a®Po T — 1 = 1 + G - 1l = DT AL
amcd Limit INSoT) = 1 : ] .. A321)
T ===
Hence, ' Limit Cy = 3R ... {322)
Al low t-e:mp-e:ram:re.s )
4 . L
- Limit M@ T) = —— (T wa = (323)
TF—a 3

so that hf".iul Oy = 12/5*R(TIE) = 2RAR(THE )" R g 7
r -



e ¥ - -
The abowe results are illustrated in Fig. 19 im which R walopes are potted against M.

- Ty ————————

Fig. 19. Plot of (TR versees FTE im a cryseal.

The characteristic Debye lemperatures for some solids are given in Tablie 8.

) EAaBELE N
Idehye Temperatures, S, oo Some Cosrurmnaa St oo caes

S et e e g, (ECh ] Subhrpamce ey IECE
Lcad = | i E5
Ml rcuary oy - Sodiwmr chilboside ZE1
Cadlmiiam 1=3 o e 315
i Sl uarm TT 2 A il FLILETE R
: & i h L e
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1 Sillver ) 215 ¥ o] B, BSD
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Since all the guantitics on the right side of Eqg. 324 except the tempe:ramre are constant for a
particular crystal, we can write this egquation as

Cy = al? e 325)

where a = II:I'I:*R;"E{BE,,- -

This is the Ffamowus Debye T—coubed law for the heat capacity of a crystal. It is in excellent
agreement with experimental data at temperatures fower than &y, even for crystals which arce more
complex than thase of the elememnts but the agrecmcmt is :::;g,niﬂt:auﬂy poor at higher L IIDETATUNES.
The deficiencies of the Debye theory of heat capacity of crystals arise fromm the fact that it l.'qllal;Eﬂ:
the acoial disribution of wibrational fregquencies by am oversimplified distribution fonction which is
obtained by ignoring the structure of the crystals.



