Laplace's Eqn. in Spherical Polar Co-ordinates

Laplace's Eqn. : $\nabla^2 \mathbf{V} = \mathbf{0}$ in spherical polar co-ordinates reads :

 $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{(r^2 \sin \theta)} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{(r^2 \sin^2 \theta)} \frac{\partial^2 V}{\partial \phi^2} = 0$

We shall restrict ourselves, to problems with axial (azimuthal) symmetry, i.e., assume V is ϕ -indep.

 $\Rightarrow 1/r^2 \partial/\partial r (r^2 \partial V/\partial r) + 1/(r^2 \sin\theta) \partial/\partial \theta (\sin\theta \partial V/\partial \theta) = 0$

Assume as before, $V(r, \theta) = R(r) f(\theta)$

 $\Rightarrow f/r^2 d/dr (r^2 dR/dr) + R/(r^2 \sin\theta) d/d\theta (\sin\theta df/d\theta) = 0$

Multiply both sides by r^2 and divide by $R(r) f(\theta)$:

 $\Rightarrow (1/R) d/dr (r^2 dR/dr) + (1/f \sin\theta) d/d\theta (\sin\theta df/d\theta) = 0$

The 2^{nd} term is purely a function of ' θ ' while 1^{st} term is purely a function of 'r', which is possible only if both are equal to some const., say ' λ '.

 \Rightarrow (1/f sin θ) d/d θ (sin θ df/d θ) = λ ---- (1)

 \Rightarrow (1/R) d/dr (r² dR/dr) = $-\lambda$ ---- (2)

Eqn.(1) \Rightarrow (1/sin θ) d/d θ (sin θ df/d θ) = λ f

Put $\mathbf{x} = \mathbf{cos}\theta \Rightarrow df/d\theta = (df/dx) (dx/d\theta) = (df/dx) (-\sin\theta)$ $\Rightarrow (\sin\theta df/d\theta) = (df/dx)(-\sin^2\theta) = (df/dx)(x^2 - 1)$ $\Rightarrow d/d\theta (\sin\theta df/d\theta) = d/dx \{(x^2 - 1) df/dx\} dx/d\theta$ $= d/dx \{(x^2 - 1) df/dx\}(-\sin\theta)$ $\Rightarrow (1/\sin\theta) d/d\theta (\sin\theta df/d\theta) = d/dx \{(1 - x^2) df/dx\}$

Thus, eqn.(1) \Rightarrow d/dx {(1 - x²) df/dx} - λ f = 0,

 \Rightarrow (1 – x²) d²f/dx² – 2x df/dx – λ f = 0, which is nothing but the Legendre eqn. We know, that if we wish to have a convergent solution for x = ± 1, i.e., θ = 0 and π , which we do wish, λ must be of the form : $-\ell(\ell+1)$.

The corresponding solution is written as : $P_{\ell}(x) = P_{\ell}(\cos\theta)$

Eqn.(2) $\Rightarrow d/dr (r^2 dR/dr) = -\lambda R = \ell (\ell + 1) R$ Try a solution of the form : $\mathbf{R} = \mathbf{r}^{\mathbf{n}} \Rightarrow dR/dr = n r^{n-1}$ $\Rightarrow r^2 dR/dr = n r^{n+1}$ $\Rightarrow d/dr (r^2 dR/dr) = n (n + 1) r^n = \ell (\ell + 1) r^n$ $\Rightarrow n (n + 1) = \ell (\ell + 1)$ $\Rightarrow n^2 + \mathbf{n} - \ell (\ell + 1) = 0$ $\Rightarrow n^2 + \mathbf{n} (\ell + 1) - \mathbf{n} \ell - \ell (\ell + 1) = 0$ $\Rightarrow \{\mathbf{n} + (\ell + 1)\} \{\mathbf{n} - \ell\} = 0 \Rightarrow \mathbf{n} = \ell, \text{ or, } \mathbf{n} = -(\ell + 1)$ i.e., $\mathbf{R} = \mathbf{Ar}^\ell + \mathbf{B}/\mathbf{r}^{\ell + 1}$

Thus, the general solution is : $V(\mathbf{r}, \theta) = \Sigma (\mathbf{A}_{\ell} \mathbf{r}^{\ell} + \mathbf{B}_{\ell} / \mathbf{r}^{\ell+1}) \mathbf{P}_{\ell} (\cos \theta)$ <u>Example : A grounded conducting sphere, placed in a uniform electric field</u> For a uniform electric field $\mathbf{E} = \mathbf{E}_0 \mathbf{k} \implies \mathbf{V} = -\mathbf{E}_0 \mathbf{r} \cos \theta + \mathbf{C}$ i) For $r \to \infty$, $V = -E_0 r \cos\theta + C$ ii) For r = a, V = 0 (since the conducting sphere is earthed) For $r \to \infty$, $V(r, \theta) = \Sigma (A_\ell r^\ell) P_\ell (\cos\theta) = A_0 + A_1 r \cos\theta + \cdots = -E_0 r \cos\theta + C$ $\Rightarrow A_0 = C, A_1 = -E_0$, and $A_\ell = 0$ for all other ℓ . $\Rightarrow V(r, \theta) = C - E_0 r \cos\theta + \Sigma B_\ell / r^{\ell+1} P_\ell (\cos\theta)$ At $r = a : V(r, \theta) = C - E_0 a \cos\theta + \Sigma B_\ell / a^{\ell+1} P_\ell (\cos\theta)$ $\Rightarrow 0 = C P_0 (\cos\theta) - E_0 a P_1(\cos\theta) + \Sigma B_\ell / a^{\ell+1} P_\ell (\cos\theta)$

We can compare term by term, because Legendre polynomials are all linearly independent.

 \Rightarrow C = - B₀/ a, E₀ a = B₁/ a² and B_l = 0 for all other 'l'

$$\Rightarrow$$
 B₀ = - C a, B₁ = E₀ a³

- $\Rightarrow V(\mathbf{r}, \theta) = \mathbf{C} \mathbf{E}_0 \mathbf{r} \cos\theta \mathbf{C} \mathbf{a}/\mathbf{r} + \mathbf{E}_0 \mathbf{a}^3/\mathbf{r}^2 \cos\theta$
 - $= C(1 a/r) + E_0 (-r + a^3/r^2) \cos\theta.$