
 

Laplace’s Eqn. in Spherical Polar Co-ordinates 

 

Laplace’s Eqn. : 2V = 0 in spherical polar co-ordinates reads :  

1/r2 /r (r2 V/r) + 1/(r2sin / (sin V/) + 1/(r2sin2 2V/  =  0   

We shall restrict ourselves, to problems with axial (azimuthal) symmetry, i.e., assume  

V is -indep.    

  1/r2 /r (r2 V/r) + 1/(r2sin / (sin V/) =  0 

Assume as before, V(r, ) = R(r) f() 

  f /r2 d/dr (r2 dR/dr) + R/(r2sin d/d (sin df/d) =  0  

Multiply both sides by r2anddivide by  R(r) f() :

              (1/R) d/dr (r2 dR/dr) + (1/f sin) d/d (sin df/d) =  0

The 2nd term is purely a function of ‘’ while 1st term is purely a function of ‘r’, which is 

possible only if both are equal to some const., say ‘’.  

  (1/f sin) d/d (sin df/d) =  

  (1/R) d/dr (r2 dR/dr) =  – 

Eqn.(1)  (1/sin) d/d (sin df/d) = f 

Put x = cos  df/ddf/dx)dx/ddf/dx) (– sin   

                                    (sin df/d) = df/dx)(– sin2df/dx)(x2 – 1

                                    d/d (sin df/d) =  d/dx {(x2 – 1df/dx}dx/d

d/dx {(x2 – 1df/dx}(– sin

                                    (1/sin) d/d (sin df/d) =  d/dx {(1 – x2df/dx} 

Thus, eqn.(1)  d/dx {(1 – x2df/dx} – f = 0,  

                       (1 – x2d2f/dx2 – 2x df/dx – f = 0, which is nothing but the  Legendre eqn. 

We know, that if we wish to have a convergent solution for x = ± 1, i.e.,  = 0 and , which we 

do wish, must be of the form :– l (l + 1).  

The corresponding solution is written as : Pl (x) = Pl (cos) 

Eqn.(2)   d/dr (r2 dR/dr) =  – Rl (l + 1) R 

Try a solution of the form : R = rn   dR/dr = n rn – 1 

                                                          r2 dR/dr = n rn + 1    

                                                          d/dr (r2 dR/dr) = n (n + 1) rn  =  l (l + 1) rn   

                                                          n (n + 1) =  l (l + 1) 

                                                          n2 + n – l (l + 1) = 0  

                                                          n2 + n (l + 1) – n l  –  l (l + 1) = 0 

                                                          {n + (l + 1)} {n –  l} = 0    n =  l , or, n =  – (l + 1) 

                                                                   i.e.,  R = Ar l + B /r l + 1 

Thus, the general solution is : V(r, ) =  (Al r
 l + Bl /r

 l + 1) Pl (cos) 

Example : A grounded conducting sphere, placed in a uniform electric field 

For a uniform electric field E = E0 k    V = – E0 z =  – E0 r cos+ C  



i) For r  , V =  – E0 r cosC

ii) For r = a, V = 0 (since the conducting sphere is earthed) 

     For r  ,  V(r, ) =  (Al r
 l ) Pl (cos)  = A0 + A1 r cos    =  – E0 r cosC  

        A0 = C, A1 = – E0, and Al = 0 for all other l.  

       V(r, ) =  C – E0 r cos Bl /r
 l + 1 Pl (cos) 

At r = a : V(r, ) = C – E0 a cos Bl /a
 l + 1 Pl (cos)  

                   0  = C P0 (cos) – E0 a P1(cos Bl /a
 l + 1 Pl (cos) 

We can compare term by term, because Legendre polynomials are all linearly independent.  

                  C = – B0/ a,  E0 a= B1/ a
2  and  Bl = 0 for all other ‘l ’ 

                  B0 = – C a,  B1 = E0 a
3 

                  V(r, ) = C – E0 r cos– C a/r + E0 a3/r2 cos

= C(1 – a/r) + E0 (– r + a3/r2) cos.  


