Laplace's Eqn. in Spherical Polar Co-ordinates

Laplace's Eqn. : $\nabla^{\mathbf{2}} \mathbf{V}=\mathbf{0}$ in spherical polar co-ordinates reads :
$1 / \mathrm{r}^{2} \partial / \partial \mathrm{r}\left(\mathrm{r}^{2} \partial \mathrm{~V} / \partial \mathrm{r}\right)+1 /\left(\mathrm{r}^{2} \sin \theta\right) \partial / \partial \theta(\sin \theta \partial \mathrm{V} / \partial \theta)+1 /\left(\mathrm{r}^{2} \sin ^{2} \theta\right) \partial^{2} \mathrm{~V} / \partial \phi^{2}=0$
We shall restrict ourselves, to problems with axial (azimuthal) symmetry, i.e., assume
V is ϕ-indep.

$$
\Rightarrow \mathbf{1} / \mathbf{r}^{2} \partial / \partial \mathbf{r}\left(\mathbf{r}^{2} \partial \mathbf{V} / \partial \mathbf{r}\right)+\mathbf{1} /\left(\mathbf{r}^{2} \sin \theta\right) \partial / \partial \theta(\sin \theta \partial \mathbf{V} / \partial \theta)=\mathbf{0}
$$

Assume as before, $V(r, \theta)=R(r) f(\theta)$
$\Rightarrow \mathrm{f} / \mathrm{r}^{2} \mathrm{~d} / \mathrm{dr}\left(\mathrm{r}^{2} \mathrm{dR} / \mathrm{dr}\right)+\mathrm{R} /\left(\mathrm{r}^{2} \sin \theta\right) \mathrm{d} / \mathrm{d} \theta(\sin \theta \mathrm{df} / \mathrm{d} \theta)=0$
Multiply both sides by r^{2} and divide by $\mathrm{R}(\mathrm{r}) \mathrm{f}(\theta)$:
$\Rightarrow(1 / R) d / d r\left(r^{2} d R / d r\right)+(1 / f \sin \theta) d / d \theta(\sin \theta d f / d \theta)=0$
The $2^{\text {nd }}$ term is purely a function of ' θ ' while $1^{\text {st }}$ term is purely a function of ' r ', which is possible only if both are equal to some const., say ' λ '.
$\Rightarrow(1 / \mathrm{f} \sin \theta) \mathrm{d} / \mathrm{d} \theta(\sin \theta \mathrm{df} / \mathrm{d} \theta)=\lambda$
$\Rightarrow(1 / \mathrm{R}) \mathrm{d} / \mathrm{dr}\left(\mathrm{r}^{2} \mathrm{dR} / \mathrm{dr}\right)=-\lambda$
Eqn. $(1) \Rightarrow(\mathbf{1} / \sin \theta) \mathbf{d} / \mathbf{d} \theta(\sin \theta \mathbf{d f} / \mathbf{d} \theta)=\boldsymbol{\lambda} \mathbf{f}$

$$
\begin{aligned}
\text { Put } \mathbf{x}=\cos \theta & \Rightarrow \mathrm{df} / \mathrm{d} \theta=(\mathrm{df} / \mathrm{dx})(\mathrm{dx} / \mathrm{d} \theta)=(\mathrm{df} / \mathrm{dx})(-\sin \theta) \\
& \Rightarrow(\sin \theta \mathrm{df} / \mathrm{d} \theta)=(\mathrm{df} / \mathrm{dx})\left(-\sin ^{2} \theta\right)=(\mathrm{df} / \mathrm{dx})\left(\mathrm{x}^{2}-1\right) \\
& \Rightarrow \mathrm{d} / \mathrm{d} \theta(\sin \theta \mathrm{df} / \mathrm{d} \theta)=\mathrm{d} / \mathrm{dx}\left\{\left(\mathrm{x}^{2}-1\right) \mathrm{df} / \mathrm{dx}\right\} \mathrm{dx} / \mathrm{d} \theta \\
& =\mathrm{d} / \mathrm{dx}\left\{\left(\mathrm{x}^{2}-1\right) \mathrm{df} / \mathrm{dx}\right\}(-\sin \theta) \\
& \Rightarrow(1 / \sin \theta) \mathrm{d} / \mathrm{d} \theta(\sin \theta \mathrm{df} / \mathrm{d} \theta)=\mathrm{d} / \mathrm{dx}\left\{\left(1-\mathrm{x}^{2}\right) \mathrm{df} / \mathrm{dx}\right\}
\end{aligned}
$$

Thus, eqn.(1) $\Rightarrow \mathbf{d} / \mathbf{d x}\left\{\left(\mathbf{1}-\mathbf{x}^{\mathbf{2}}\right) \mathbf{d f} / \mathbf{d x}\right\}-\lambda \mathbf{f}=\mathbf{0}$,

$$
\Rightarrow\left(1-x^{2}\right) d^{2} f / d x^{2}-2 x d f / d x-\lambda f=0 \text {, which is nothing but the Legendre eqn. }
$$

We know, that if we wish to have a convergent solution for $x= \pm 1$, i.e., $\theta=0$ and π, which we do wish, λ must be of the form : $-\ell(\ell+1)$.
The corresponding solution is written as : $\mathrm{P}_{\ell}(\mathrm{x})=\mathrm{P}_{\ell}(\cos \theta)$
Eqn.(2) $\Rightarrow d / d r\left(r^{2} d R / d r\right)=-\lambda R=\ell(\ell+1) R$
Try a solution of the form : $\mathbf{R}=\mathbf{r}^{\mathbf{n}} \Rightarrow \mathrm{dR} / \mathrm{dr}=\mathrm{nr} \mathrm{r}^{\mathrm{n}-1}$

$$
\begin{aligned}
& \Rightarrow \mathrm{r}^{2} \mathrm{dR} / \mathrm{dr}=\mathrm{n} \mathrm{r}^{\mathrm{n}+1} \\
& \Rightarrow \mathrm{~d} / \mathrm{dr}\left(\mathrm{r}^{2} \mathrm{dR} / \mathrm{dr}\right)=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}}=\ell(\ell+1) \mathrm{r}^{\mathrm{n}} \\
& \Rightarrow \mathrm{n}(\mathrm{n}+1)=\ell(\ell+1) \\
& \Rightarrow \mathrm{n}^{2}+\mathbf{n}-\ell(\ell+1)=0 \\
& \Rightarrow \mathrm{n}^{2}+\mathbf{n}(\ell+\mathbf{1})-\mathbf{n} \ell-\ell(\ell+1)=0 \\
& \Rightarrow\{\mathbf{n}+(\ell+\mathbf{1})\}\{\mathbf{n}-\ell\}=0 \Rightarrow \mathbf{n}=\boldsymbol{\ell}, \mathbf{o r}, \mathbf{n}=-(\ell+\mathbf{1}) \\
& \text { i.e., } \mathbf{R}=\mathbf{A r} \mathbf{r}^{\ell}+\mathbf{B} / \mathbf{r}^{\ell+\mathbf{1}}
\end{aligned}
$$

Thus, the general solution is : $\mathbf{V}(\mathbf{r}, \theta)=\Sigma\left(\mathbf{A}_{\iota} \mathbf{r}^{\ell}+\mathbf{B}_{\ell} / \mathbf{r}^{\ell+\mathbf{1}}\right) \mathbf{P}_{\ell}(\cos \theta)$
Example: A grounded conducting sphere, placed in a uniform electric field
For a uniform electric field $\mathbf{E}=\mathrm{E}_{0} \mathbf{k} \Rightarrow \mathrm{~V}=-\mathrm{E}_{0} \mathrm{z}=-\mathrm{E}_{0} \mathrm{r} \cos \theta+\mathrm{C}$
i) For $r \rightarrow \infty, V=-E_{0} r \cos \theta+C$
ii) For $r=a, V=0$ (since the conducting sphere is earthed)

For $\mathrm{r} \rightarrow \infty, \mathrm{V}(\mathrm{r}, \theta)=\boldsymbol{\Sigma}\left(\mathrm{A}_{\iota} \mathrm{r}^{\ell}\right) \mathrm{P}_{\iota}(\cos \theta)=\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{r} \cos \theta+\cdots=-\mathrm{E}_{0} \mathrm{r} \cos \theta+\mathrm{C}$
$\Rightarrow \mathrm{A}_{0}=\mathrm{C}, \mathrm{A}_{1}=-\mathrm{E}_{0}$, and $\mathrm{A}_{\iota}=0$ for all other ℓ.
$\Rightarrow \mathrm{V}(\mathrm{r}, \theta)=\mathrm{C}-\mathrm{E}_{0} \mathrm{r} \cos \theta+\Sigma \mathrm{B}_{\ell} / \mathrm{r}^{\ell+1} \mathrm{P}_{\ell}(\cos \theta)$
At $\mathrm{r}=\mathrm{a}: \mathrm{V}(\mathrm{r}, \theta)=\mathrm{C}-\mathrm{E}_{0} \mathrm{a} \cos \theta+\Sigma \mathrm{B}_{\ell} / \mathrm{a}^{\ell+1} \mathrm{P}_{\ell}(\cos \theta)$
$\Rightarrow 0=\mathrm{C} \mathrm{P}_{0}(\cos \theta)-\mathrm{E}_{0} \mathrm{a} \mathrm{P}_{1}(\cos \theta)+\Sigma \mathrm{B}_{\ell} / \mathrm{a}^{\ell+1} \mathrm{P}_{\ell}(\cos \theta)$
We can compare term by term, because Legendre polynomials are all linearly independent.

$$
\begin{aligned}
& \Rightarrow C=-B_{0} / a, E_{0} a=B_{1} / a^{2} \text { and } B_{\ell}=0 \text { for all other }{ }^{\prime} \ell \text { ' } \\
& \Rightarrow B_{0}=-C a, B_{1}=E_{0} a^{3} \\
& \Rightarrow V(\mathbf{r}, \theta)=\mathbf{C}-\mathbf{E}_{0} \mathbf{r} \cos \theta-\mathbf{C} \mathbf{a} / \mathbf{r}+\mathbf{E}_{0} \mathbf{a}^{3} / \mathbf{r}^{2} \cos \theta \\
& \quad=\mathbf{C}(\mathbf{1}-\mathbf{a} / \mathbf{r})+\mathbf{E}_{0}\left(-\mathbf{r}+\mathbf{a}^{3} / \mathbf{r}^{2}\right) \cos \theta .
\end{aligned}
$$

