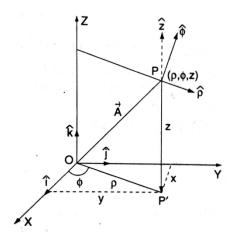
# Velocity and acceleration of a particle in cylindrical polar coordinates:



In cylindrical polar coordinates the coordinates of a point P is represented by  $(\rho, \phi, z)$ . The position vector of P is given by

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} = \rho Cos\phi\hat{i} + \rho Sin\phi\hat{j} + z\hat{k} \dots (1)$$

 $\frac{\partial \vec{r}}{\partial \rho}$  is a vector in the direction of increasing  $\rho$  , so that a unit vector in this direction is given by

$$\hat{\rho} = \frac{\partial \vec{r}}{\partial \rho} / \left| \frac{\partial \vec{r}}{\partial \rho} \right| \dots (2)$$

Now, 
$$\frac{\partial \vec{r}}{\partial \rho} = Cos\phi \hat{i} + Sin\phi \hat{j}$$
 and  $\left| \frac{\partial \vec{r}}{\partial \rho} \right| = \sqrt{Cos^2\phi + Sin^2\phi} = 1$ .

$$\therefore \hat{\rho} = Cos\phi \hat{i} + Sin\phi \hat{j} \dots (3)$$

Similarly, unit vectors in the direction of increasing  $\phi$  and increasing z are given by

$$\hat{\phi} = \frac{\partial \vec{r}}{\partial \phi} / \left| \frac{\partial \vec{r}}{\partial \phi} \right|$$
 and  $\hat{\mathbf{z}} = \frac{\partial \vec{r}}{\partial z} / \left| \frac{\partial \vec{r}}{\partial z} \right|$  respectively.

Now, 
$$\frac{\partial \vec{r}}{\partial \phi} = -\rho Sin\phi \hat{i} + \rho Cos\phi \hat{j}$$
 and  $\left| \frac{\partial \vec{r}}{\partial \phi} \right| = \sqrt{(-\rho Sin\phi)^2 + (\rho Cos\phi)^2} = \rho$ .

$$\therefore \hat{\phi} = -Sin\phi\hat{i} + Cos\phi\hat{j} \dots (4)$$

And 
$$\frac{\partial \vec{r}}{\partial z} = \hat{k}$$
 and  $\left| \frac{\partial \vec{r}}{\partial z} \right| = 1$ .

$$\therefore \hat{\mathbf{z}} = \hat{k} \dots (5)$$

Equations (3), (4) and (5) can be solved to get the expressions of unit vectors  $\hat{i}$ ,  $\hat{j}$ ,  $\hat{k}$  in terms of  $\hat{\rho}$ ,  $\hat{\phi}$ ,  $\hat{z}$  and are given by,

$$\hat{i} = Cos\phi\hat{\rho} - Sin\phi\hat{\phi}$$
.....(6)

$$\hat{j} = Sin\phi\hat{\rho} + Cos\phi\hat{\phi}$$
 .....(7)

$$\hat{k} = \hat{z}$$

Now, 
$$\frac{d\hat{\rho}}{dt} = \frac{d\hat{\rho}}{d\phi} \frac{d\phi}{dt} = (-Sin\phi\hat{i} + Cos\phi\hat{j}) \frac{d\phi}{dt} = \hat{\phi} \frac{d\phi}{dt}$$
....(8)

$$\frac{d\hat{\phi}}{dt} = \frac{d\hat{\phi}}{d\phi}\frac{d\phi}{dt} = (-Cos\phi\hat{i} - Sin\phi\hat{j})\frac{d\phi}{dt} = -\hat{\rho}\frac{d\phi}{dt}....(9)$$

And 
$$\frac{d \hat{z}}{dt} = 0$$
 .....(10)

Position vector of point P can be written as,

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$= \rho Cos\phi(Cos\phi\hat{\rho} - Sin\phi\hat{\phi}) + \rho Sin\phi(Sin\phi\hat{\rho} + Cos\phi\hat{\phi}) + z\hat{z} \quad \text{[Using equations (6), (7)]}$$

$$= \rho\hat{\rho} + z\hat{z}.....(11)$$

Velocity:

Velocity of any particle having the instantaneous position vector  $\vec{r}$  is given by,

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\rho}{dt}\hat{\rho} + \rho \frac{d\hat{\rho}}{dt} + \frac{dz}{dt}\hat{z}$$

$$= \frac{d\rho}{dt}\hat{\rho} + \rho \left(\hat{\phi}\frac{d\phi}{dt}\right) + \frac{dz}{dt}\hat{z}$$

$$= \frac{d\rho}{dt}\hat{\rho} + \rho \frac{d\phi}{dt}\hat{\phi} + \frac{dz}{dt}\hat{z}$$

$$= \frac{\partial\rho}{\partial t}\hat{\rho} + \rho \frac{\partial\phi}{\partial t}\hat{\phi} + \frac{\partial z}{\partial t}\hat{z}$$

$$= \frac{\partial\rho}{\partial t}\hat{\rho} + \rho \frac{\partial\phi}{\partial t}\hat{\phi} + \hat{z}\hat{z}.....(12)$$

Acceleration:

Acceleration of the particle is given by,

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left( \frac{d\rho}{dt} \hat{\rho} + \rho \frac{d\phi}{dt} \hat{\phi} + \frac{dz}{dt} \hat{z} \right)$$

$$= \frac{d^2\rho}{dt^2} \hat{\rho} + \frac{d\rho}{dt} \frac{d\hat{\rho}}{dt} + \frac{d\rho}{dt} \frac{d\phi}{dt} \hat{\phi} + \rho \frac{d^2\phi}{dt^2} \hat{\phi} + \rho \frac{d\phi}{dt} \frac{d\hat{\phi}}{dt} + \frac{d^2z}{dt^2} \hat{z}$$

$$= \frac{d^2\rho}{dt^2} \hat{\rho} + \frac{d\rho}{dt} \left( \hat{\phi} \frac{d\phi}{dt} \right) + \frac{d\rho}{dt} \frac{d\phi}{dt} \hat{\phi} + \rho \frac{d^2\phi}{dt^2} \hat{\phi} + \rho \frac{d\phi}{dt} \left( -\hat{\rho} \frac{d\phi}{dt} \right) + \frac{d^2z}{dt^2} \hat{z}$$

$$= \left[ \frac{d^2\rho}{dt^2} - \rho \left( \frac{d\phi}{dt} \right)^2 \right] \hat{\rho} + \left( \rho \frac{d^2\phi}{dt^2} + 2 \frac{d\rho}{dt} \frac{d\phi}{dt} \right) \hat{\phi} + \frac{d^2z}{dt^2} \hat{z}$$

$$= \left( \ddot{\rho} - \rho \dot{\phi}^2 \right) \hat{\rho} + \left( \rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi} \right) \hat{\phi} + \ddot{z} \hat{z}$$

$$= (3)$$

Note: Any arbitrary vector  $\vec{A}$ , in cylindrical polar coordinates can be written as

$$\vec{A} = A_{\rho}\hat{\rho} + A_{\phi}\hat{\phi} + A_{z}\hat{z} \dots (14)$$

Where  $A_{\rho},A_{\phi},A_{z}$  are the components of  $\vec{A}$  in the directions of  $\hat{\rho},\hat{\phi},\hat{z}$  respectively.

Now,

If we put  $\vec{A}=\vec{r}$  and  $A_{\rho}=\rho, A_{\phi}=0, A_{z}=z$  , in eq. (15), we get velocity  $\vec{v}=\frac{d\vec{r}}{dt}$  .

## Problem:

A force  $\vec{F}$  is given in Cartesian coordinates as  $\vec{F}=yB\hat{i}-xB\hat{j}$  , where B is a constant. Find the component  $F_{\phi}$  in cylindrical polar coordinates.

#### **Solution:**

We have,

$$\begin{split} \vec{F} &= yB\hat{i} - xB\hat{j} \\ &= B\rho Sin\phi \Big(Cos\phi\hat{\rho} - Sin\phi\hat{\phi}\Big) - B\rho Cos\phi \Big(Sin\phi\hat{\rho} + Cos\phi\hat{\phi}\Big) \\ &= -B\rho\hat{\phi} \end{split}$$

Thus, 
$$F_{\phi} = -B\rho$$
.

### **Problem:**

A particle of charge  $\,q\,$  and mass  $\,m\,$  moves in a uniform magnetic field  $\,\vec{B}=B\hat{z}\,$  and an electric field  $\,\vec{E}=\frac{a}{\rho}\,\hat{\rho}\,$ , where the constants  $\,a\,$  and  $\,B\,$  may be either positive or negative. Set up the equation of motion in cylindrical polar coordinates and show that  $\,m\rho^2\dot{\phi}+\frac{qB}{2c}\,\rho^2\,$  is a constant of motion. Assume that the force due to electric field is  $\,q\vec{E}\,$  and that due to magnetic field is  $\,\frac{q}{c}\,$ ( $\,\vec{v}\,$ x  $\,\vec{B}\,$ ).

#### **Solution:**

Equation of motion of the particle is given by,

$$m\vec{a} = \vec{F} = q\vec{E} + \frac{q}{c} (\vec{v} \times \vec{B})$$

In cylindrical polar coordinates, velocity and acceleration are given by,

$$\vec{v} = \dot{\rho}\hat{\rho} + \rho\dot{\phi}\hat{\phi} + \dot{z}\,\hat{z}, \vec{a} = \left(\ddot{\rho} - \rho\dot{\phi}^2\right)\hat{\rho} + \left(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi}\right)\hat{\phi} + \ddot{z}\,\hat{z}$$

$$\therefore m \left[ \left( \ddot{\rho} - \rho \dot{\phi}^{2} \right) \hat{\rho} + \left( \rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi} \right) \hat{\phi} + \ddot{z} \hat{z} \right] = q \frac{a}{\rho} \hat{\rho} + \frac{q}{c} \left[ \left( \dot{\rho} \hat{\rho} + \rho \dot{\phi} \dot{\phi} \right) x B \hat{z} \right]$$

$$= q \frac{a}{\rho} \hat{\rho} - \frac{q}{c} \dot{\rho} B \hat{\phi} + \frac{q}{c} \rho \dot{\phi} B \hat{\rho}$$

$$= \left( \frac{qa}{\rho} + \frac{q \dot{\phi} B \rho}{c} \right) \hat{\rho} - \frac{q \dot{\rho} B}{c} \hat{\phi}$$

The equations of motion are given by,

$$m(\ddot{\rho} - \rho\dot{\phi}^{2}) = \frac{qa}{\rho} + \frac{q\dot{\phi}B\rho}{c}$$

$$m(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi}) = -\frac{q\dot{\rho}B}{c}$$

$$m\ddot{z} = 0$$

Multiplying the second equation by  $\,\rho$  , we have

$$m\left(\rho^{2}\ddot{\phi} + 2\rho\dot{\rho}\dot{\phi}\right) = -\frac{q\rho\dot{\rho}B}{c}$$
$$Or, \frac{d}{dt}\left(m\rho^{2}\dot{\phi} + \frac{qB}{2c}\rho^{2}\right) = 0$$

$$\therefore m\rho^2\dot{\phi} + \frac{qB}{2c}\rho^2 = \text{a constant of motion}.$$