
Maxima – Minima 

Function of a single variable 

One dimensional Taylor Expansion : 

 If we know the values of a function f(x), along with its derivatives, at a point ‘x’, then Taylor 

expansion gives us the value of the function at a neighbouring point (x + h) : 

f(x + h) = f(x) + h f (x) + h2/2! f (x) + h3/3! f (x) +     

If the function has a (local) maximum or minimum at a point ‘x’ then the value of the function 

should be locally stationary. i.e. f(x) should be equal to f(x + h) 

for a small ‘h’. This implies : f (x) = 0  up to 1st order in h. 

Pictorially also, one can see that the tangent at the point ‘x’ is 

parallel to the x-axis.  

Now, up to 2nd order in h : 

           f(x + h) = f(x) + h2/2! f (x)  [since f (x) = 0]   

If the point ‘x’ is a maximum, we require f(x + h) < f(x) for both 

+ve and -ve ‘h’. This implies :  f (x) < 0. 

Similarly, if the point ‘x’ is a minimum, we require f(x + h) > f(x) for both +ve and -ve ‘h’, 

which implies :  f (x) > 0. 

Thus, condition for Maximum is : f (x) = 0, f (x) < 0 

and condition for Minimum is : f (x) = 0, f (x) > 0 

If, however, f (x) = 0, we need to go to higher orders. Up to 3rd order in h : 

f(x + h) = f(x) + h3/3! f (x)  [since f (x) = 0, f (x) = 0]   

Now, we find that, if f (x) > 0, then f(x + h) > f(x) for +ve ‘h’  

                                                     and f(x + h) < f(x) for -ve ‘h’  

The situation gets reversed if f (x) < 0.  

Thus f(x) has neither a maximum nor a minimum at x. It is 

called a ‘Point of inflection’. 

The general prescription is thus as follows : 

Keep on differentiating f(x) and evaluate the derivatives at ‘x’. 

If the first non-zero derivative occurs at an odd order  

(like 3), (be it +ve or –ve) then ‘x’ is a point of inflection.  

If the first non-zero derivative occurs at an even order (say n = 2),  

then there is either a max., or a min. at ‘x’.  

If f n(x) < 0, it’s a max., if f n(x) > 0, it’s a min. 

 

Examples : 

1. f(x) = x2   f (x) = 2x.   So, f (x) = 0 at x = 0.   

            f (x) = 2 at x = 0 (actully, at all points)  x = 0 is a minimum point. 

2. f(x) = 10 – x2   f (x) = – 2x.   So, f (x) = 0 at x = 0.   

            f (x) =  – 2 at x = 0 (actully, at all points)  x = 0 is a point of maxima. 

3. f(x) = x3   f (x) = 3x2.   So, f (x) = 0 at x = 0.   

            f (x) = 6x = 0 at x = 0    f (x) = 6 (non-zero at 3rd order ) at x = 0 

             x = 0 is a point of inflection. 



 

4. f(x) = x4   f (x) = 4x3.   So, f (x) = 0 at x = 0.   

            f (x) = 12x2 = 0 at x = 0    f (x) = 24x = 0 at x = 0   

              f (x) = 24 (non-zero at 4th order) at x = 0, hence, x = 0 is a minimum point. 

  

Function of a two variables 

 

Two dimensional Taylor Expansion : 

f(x+h, y+k) = f(x, y) + {h fx(x, y) + k fy(x, y)}  

                                  + {h2 fxx(x, y) + k2 fyy(x, y) + 2 hk fxy(x, y)}/ 2! +       
In this case, if the function has a (local) maximum or minimum at a point (x, y) then the value of the 

function should be stationary within a small patch around the point (x, y).  

Upto 1st order :  

f(x+h, y+k) = f(x, y)  fx(x, y) = 0, fy(x, y) = 0, if x and y are independent variables.  

To find whether there is a maximum or minimum at this point, we are to evaluate the 

Hessian determinant : 

                fxx         fxy =  (fxx fyyfxy
2)  =  H   

                fyx        fyy      

If  H > 0, and fxx > 0, the point (x, y) is a minimum point;  

if  H > 0, and fxx < 0, the point (x, y) is a maximum point;   

            if  H = 0, no such conclusion can be drawn 

            and if H < 0, the point (x, y) is a ‘saddle point’.   

A saddle point is one which is maximum along one axis and minimum along 

another. Typical example is the point at the middle of a horse’ saddle  

(hence the name).    

 

Constrained Maxima/Minima 

Lagrange’ s Method of Undetermined Multiplier 

Suppose you area given a function of several variables f(x, y, z) and you are to find the 

maxima / minima of the function, subject to one or more ‘constraints’ of the form (x, y, z) = const. 

(The number of variables – the number of constraints) is usually called the ‘degrees of freedom’.  

the Since at the extremum point, the function is locally stationary,   

df(x,y) = 0    fx dx + fy dy + fz dz  = 0  ---- (1)   

However, dx, dy, dz are not independent here, because of the constraint. So, we cannot equate 

their coefficient to zero.  

  (x, y, z) = c    d(x, y, z) = 0   x dx + y dy + z dz  = 0  ---- (2)  

Multiply eqn.(2) by some constant ‘’ (which is not determined so far) and add with eqn.(1) :  

       {fx +  x} dx + {fy +  y} dy + {fz +  z } dz = 0  ---- (3) 

 Since we have three variables and one constraints here, the number of independent variables = 2. 

We may choose, say as x and y as the independent ones. Now we adjust ‘’ to make the coefficient 

of dz = 0, i.e.,   

                        fz +  z = 0  ---- (4) 



[which is possible by making  =  – fz / z]  

Now, eqn. (3)  {fx +  x} dx + {fy +  y} dy = 0, 

where dx and dy are chosen as independent. So, now we can equate their coefficient to zero.  

    fx +  x = 0  ---- (5) 

                 fy +  y = 0  ---- (6) 

Solving (4), (4) and (6), together with the constraint eqn. (x, y, z) = c, we can find x, y, z and  

also . If we have two constraints, say (x, y, z) = c1 and (x, y, z) = c2, then : 

d(x, y, z) = 0   x dx + y dy + z dz  = 0  ---- (7)  

d(x, y, z) = 0   x dx + y dy + z dz = 0  ---- (8)  

Multiplying eqn.(7) by ‘’ and (8) by ‘’ and adding with eqn.(1) :  

       {fx + x + x} dx + {fy +  y +  y} dy + {fz +  z +  z} dz = 0  ---- (9) 

Now, only one variable is independent say ‘x’. We can adjust ‘’ and ‘’ to make :  

fy +  y +  y = 0  ---- (10) 

    and  fz +  z +  z  = 0  ---- (11) 

[which is possible by solving eqns. (10) and (11) for  and ] 

Then, equating the coefficient of ‘dx’ to zero we get :  

fx + x + x  = 0  ---- (12) 

So, we shall need to solve eqns (10), (11), (12), together with the two constraint equations :  

(x, y, z) = c1 and (x, y, z) = c2, to find x, y, z ,  and . 

Examples :  

1. Maximize the area of a rectangle formed by a string of fixed length ‘L’. 

Let the sides of the rectangle be x and y. Then, area A = xy and the perimeter = 2(x + y) = L. 

  A/x +  L/x = y + 2

     A/y +  L/y = x + 2

x = y. i.e. the rectangle must be a square. 

Substituting in the constraint eqn. : 4x = L  x = L/4.

2. Maximize the volume of a rectangular parallelepiped, subject to the constraint that its total surface   

    area is constant. 

Let the sides of the parallelepiped be x, y and z. Then, its volume V = xyz and the surface  

area S = 2(xy + yz + zx) = const. 

        Vx +  Sx = 0  yz + 2 (y + z) = 0 ---- (a) 

            Vy +  Sy = 0  xz + 2 (x + z) = 0 ---- (b) 

            Vz +  Sz = 0  xy + 2 (x + y) = 0  ---- (c) 

 Multiply eqn. (a) by x and eqn.(b) by y and subtract : 

      2 (xz – yz) = 0   x = z 

Similarly, we can show that y = z and z = x. 

     S = 2(xy + yz + zx) = 6x2 

     x = (S/6), in terms of the given data.                                   

                                           


