A note on Probability Distributions
 Debashis Chatterjee
 Department of physics

The concept of Probability Distribution plays an important role in Physics. They may be of different kinds - some discrete and some continuous. Below we shall discuss three frequently appearing distributions, one discrete, one continuous, while the third showing a transition from the former to the latter.

We shall assume that the reader is familiar with the basic concept of Probability, the basic definitions and properties.

Binomial Distribution

One-dimensional Random Walk Problem

A person standing at the origin will take ' N ' steps. If the probability of his taking a step towards right is ' p ' and that towards left is ' q ', what is the prob. that the person takes ' n ' steps towards right and the remaining $(\mathrm{N}-\mathrm{n})$ steps towards left ?

The no. of ways he can chose his ' n ' steps towards right $={ }^{N} C_{n}$
(for example, the $1^{\text {st }}$ step, the $3^{\text {rd }}$ step and the $4^{\text {th }}$ step)
For one such combination: (e.g. R L L R R),
The prob. of taking one step towards right $=p$
$\Rightarrow \quad$ the prob. of taking ' n ' step towards right $=p^{n}$
The prob. of taking one step towards left $=\mathrm{q}$
$\Rightarrow \quad$ the prob. of taking $(N-n)$ step towards left $=q^{(N-n)}$
$\Rightarrow \quad$ the prob. of the particular combination considered $=\mathrm{p}^{\mathrm{n}} \times \mathrm{q}^{(\mathrm{N}-\mathrm{n})}$
$\Rightarrow \quad$ the prob. of all such combinations
(with ' n ' steps towards right and $(N-n)$ steps towards left) $={ }^{N} \mathbf{C}_{\mathbf{n}} \times \mathbf{p}^{\mathbf{n}} \times \mathbf{q}^{(N-\mathbf{n})}$

The above result was proved by the Swiss mathematician Jakob Bernoulli, which was published posthumously in 1713.

Note that : the above expression is a term in the binomial expansion of $(p+q)^{N}$
$(p+q)^{N}=p^{N}+{ }^{N} C_{1} p^{n-1} q+{ }^{N} C_{2} p^{n-2} q^{2}+\ldots q^{N}$
$=\Sigma^{N} C_{n} \times p^{n} \times q^{(N-n)}$
If we sum over all possible values of ' n ' (from 0 to N), we exhaust all the possibilities.
$\therefore \Sigma^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \times \mathrm{p}^{\mathrm{n}} \times \mathrm{q}^{(\mathrm{N}-\mathrm{n})}$ should be 1 .
Now, $p+q=1$, because the a single step may either be towards left or towards right.
\therefore LHS : $(p+q)^{\mathrm{N}}=1$ (proved)

Mean $\langle\mathrm{n}\rangle$:
If the value of a quantity ' x ' is found to be x_{i} for n_{i} number of times, then
the mean x is : $\boldsymbol{\Sigma} \mathbf{n}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} / \boldsymbol{\Sigma} \mathbf{n}_{\mathbf{i}} ;$
but $\left(n_{i} / \Sigma n_{i}\right)$ gives the probability ' P_{i} ' of obtaining the value x_{i}
\therefore mean x: $\langle\mathrm{x}\rangle=\boldsymbol{\Sigma} \mathbf{x}_{\mathbf{i}} \mathbf{P}_{\mathrm{i}}$
Thus, $\langle\mathrm{n}\rangle=\Sigma \mathrm{nP}(\mathrm{n})$, where $\mathrm{P}(\mathrm{n})={ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{(\mathrm{N}-\mathrm{n})}$
Now, $(p+q)^{N}=\sum^{N} C_{n} p^{n} q^{(N-n)}$
Now differentiate both sides partially, w.r.t. 'p' :

From the RHS : $\partial / \partial \mathrm{p} \Sigma^{N} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{(\mathrm{N}-\mathrm{n})}=\Sigma^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}\left(\mathrm{np}^{\mathrm{n}-1}\right) q^{(\mathrm{N}-\mathrm{n})}$

$$
\Rightarrow \mathrm{p} \partial / \partial \mathrm{p} \Sigma^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{(\mathrm{N}-\mathrm{n})}=\Sigma^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}\left(\mathrm{np}^{\mathrm{n}}\right) \mathrm{q}^{(\mathrm{N}-\mathrm{n})}
$$

Which is nothing but $\Sigma \mathrm{nP}(\mathrm{n})=\langle\mathrm{n}\rangle$
From the LHS : $\partial / \partial \mathrm{p}(\mathrm{p}+\mathrm{q})^{\mathrm{N}}=\mathrm{N}(\mathrm{p}+\mathrm{q})^{\mathrm{N}-1}$

$$
\begin{aligned}
& \text { or, } \partial / \partial \mathrm{p}(\mathrm{p}+\mathrm{q})^{\mathrm{N}}=\mathrm{N}(\mathrm{p}+\mathrm{q})^{\mathrm{N}-1} \\
& \Rightarrow \mathrm{p} \partial / \partial \mathrm{p}(\mathrm{p}+\mathrm{q})^{\mathrm{N}}=\mathrm{Np}(\mathrm{p}+\mathrm{q})^{\mathrm{N}-1}
\end{aligned}
$$

Remember : $(\mathrm{p}+\mathrm{q})=1$.
So, $\langle\mathbf{n}\rangle=\mathbf{N p}$.
This is somewhat expected, since ' p ' s the prob. of taking a 'right' step, Np is the 'expected' number of right steps, out of a total number of N steps.

A point to remember: While differentiating partially, w.r.t. 'p', we treat p and q to be independent variables, though at the end of the calculation, we set : $q=(1-p)$.
Mean $\left\langle\mathrm{n}^{2}\right\rangle$:

$$
\begin{aligned}
& (p+q)^{N}=\Sigma^{N} C_{n} p^{n} q^{(N-n)} \\
\Rightarrow & p \partial / \partial p \Sigma^{N} C_{n} p^{n} q^{(N-n)}=\Sigma^{N} C_{n}\left(n p^{n}\right) q^{(N-n)} \\
\Rightarrow & \partial / \partial p(p \partial / \partial p) \Sigma^{N} C_{n} p^{n} q^{(N-n)}=\Sigma^{N} C_{n}\left(n^{2} p^{n-1}\right) q^{(N-n)} \\
\Rightarrow & p \partial / \partial p(p \partial / \partial p) \Sigma^{N} C_{n} p^{n} q^{(N-n)}=\Sigma^{N} C_{n}\left(n^{2} p^{n}\right) q^{(N-n)}, \\
& =\left\langle n^{2}\right\rangle
\end{aligned}
$$

From the LHS : $p \partial / \partial \mathrm{p}(\mathrm{p}+\mathrm{q})^{\mathrm{N}}=\mathrm{Np}(\mathrm{p}+\mathrm{q})^{\mathrm{N}-1}$

$$
\text { or, } \partial / \partial p(p \partial / \partial p)(p+q)^{N}=N(p+q)^{N-1}+N(N-1) p(p+q)^{N-2}
$$

$$
\Rightarrow \mathrm{p} \partial / \partial \mathrm{p}(\mathrm{p} \partial / \partial \mathrm{p})(\mathrm{p}+\mathrm{q})^{\mathrm{N}}=\mathrm{Np}(\mathrm{p}+\mathrm{q})^{\mathrm{N}}+\mathrm{N}(\mathrm{~N}-1) \mathrm{p}^{2}(\mathrm{p}+\mathrm{q})^{\mathrm{N}-2}
$$

$$
=\mathbf{N} \mathbf{p}+\mathbf{N}(\mathbf{N}-\mathbf{1}) \mathbf{p}^{2} \text { as }(p+q)=1
$$

Standard Deviation σ :

$$
\begin{aligned}
\left\langle\mathrm{n}^{2}\right\rangle-\langle\mathrm{n}\rangle^{2} & =\left[\mathrm{Np}+\mathrm{N}^{2} \mathrm{p}^{2}-\mathrm{Np}^{2}\right]-\mathrm{N}^{2} \mathrm{p}^{2} \\
& =\mathrm{Np}-\mathrm{Np}^{2} \\
& =\mathrm{Np}(1-\mathrm{p})=\mathrm{Npq} \\
\Rightarrow \sigma & =\left[\left\langle\mathrm{n}^{2}\right\rangle-\langle\mathrm{n}\rangle^{2}\right]^{1 / 2}=\sqrt{ }(\mathbf{N} \mathbf{p q})
\end{aligned}
$$

Poisson Distribution

Poisson Distribution is named after the French Mathematician Siméon Denis Poisson, who discovered it in 1838.

For a Binomial Distribution, we have seen that :

$$
\mathrm{P}(\mathrm{n})={ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{(\mathrm{N}-\mathrm{n})}={ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}}(1-\mathrm{p})^{(\mathrm{N}-\mathrm{n})}
$$

Let us consider a situation where ' N ' is very large, ' p ' is very small, but Np is finite $=\mathrm{x}$, say. The term : ${ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}=\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \ldots(\mathrm{N}-\mathrm{n}+1) / \mathrm{n}$! As long as ' n ' is finite and small compared to ' N ', ${ }^{N} C_{n} \approx N n / n$! Combined with the term p^{n},

$$
{ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \approx \mathrm{~N}^{\mathrm{n}} \mathrm{p} / \mathrm{n}!\approx \mathrm{x}^{\mathrm{n}} / \mathrm{n}!
$$

The term : $(1-\mathrm{p})^{(\mathrm{N}-\mathrm{n})}$ can be approximated as : $(1-\mathrm{p})^{\mathrm{N}}$

$$
=(1-\mathrm{x} / \mathrm{N})^{\mathrm{N}}
$$

and in the limit $\mathrm{N} \rightarrow \infty,(1-\mathrm{x} / \mathrm{N})^{\mathrm{N}} \rightarrow \mathrm{e}^{-\mathrm{x}}$

Explicitly:

$$
\begin{aligned}
(1-\mathrm{p})^{(\mathrm{N}-\mathrm{n})} & =1-(\mathrm{N}-\mathrm{n}) \mathrm{p}+(\mathrm{N}-\mathrm{n})(\mathrm{N}-\mathrm{n}-1) / 2!\mathrm{p}^{2}+\ldots \\
& \approx 1-\mathrm{Np}+\left(\mathrm{N}^{2} / 2!\right) \mathrm{p}^{2}+\ldots,
\end{aligned}
$$

neglecting ' n ' with respect to ' N '.

$$
\begin{aligned}
\Rightarrow(1-\mathrm{p})^{(\mathrm{N}-\mathrm{n})} & \approx 1-\mathrm{Np}+\left(\mathrm{N}^{2} \mathrm{p}^{2} / 2!\right)+\ldots \\
& \approx 1-\mathrm{x}+\mathrm{x}^{2} / 2!+\ldots \\
& =\mathrm{e}^{-\mathrm{x}}
\end{aligned}
$$

Towards the end of the series, $[(\mathrm{N}-\mathrm{n})-\mathrm{k}]$ becomes comparable to ' 1 ', or in other words, N becomes comparable to $(\mathrm{n}+\mathrm{k})$, because ' k ' increases. However, combined with p^{n}, such terms $\rightarrow 0$, as $\mathrm{p} \rightarrow 0$.
Thus,

$$
\mathrm{P}(\mathrm{n})={ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}} \mathrm{p}^{\mathrm{n}} \mathrm{q}^{(\mathrm{N}-\mathrm{n})} \approx \mathrm{x}^{\mathrm{n}} \mathrm{e}^{-\mathrm{x}} / \mathrm{n}!
$$

Normalization :

$$
\begin{aligned}
& \Sigma \mathrm{P}(\mathrm{n}) \text { for } \mathrm{n}
\end{aligned}=0 \text { to } \infty, ~=~=~ \mathrm{x}^{\mathrm{n}} \mathrm{e}^{-\mathrm{x}} / \mathrm{n}!=\mathrm{e}^{-\mathrm{x}} \sum \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\mathrm{e}^{-\mathrm{x}} \times \mathrm{e}^{\mathrm{x}}=1 .
$$

Mean $\langle\mathrm{n}\rangle$:

$$
\langle\mathrm{n}\rangle=\Sigma \mathrm{n} \mathrm{P}(\mathrm{n})=\mathrm{e}^{-\mathrm{x}} \Sigma \mathrm{nx} / \mathrm{n}!
$$

Now, $\partial / \partial \mathrm{x} \Sigma \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\Sigma \mathrm{nx}^{\mathrm{n}-1} / \mathrm{n}!$

$$
\Rightarrow(\mathrm{x} \partial / \partial \mathrm{x}) \Sigma \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\Sigma \mathrm{nx} / \mathrm{n}!
$$

So, $\Sigma n x^{n} / n!=(x \partial / \partial x) e^{x}=x e^{x}$

$$
\Rightarrow \quad\langle\mathbf{n}\rangle=\mathbf{e}^{-\mathrm{x}} \Sigma \mathbf{n} \mathbf{x}^{\mathrm{n}} / \mathbf{n}!=\mathbf{x}
$$

Explicitly:

$$
\begin{aligned}
\langle\mathrm{n}\rangle & =\mathrm{e}^{-x} \sum \mathrm{n} x^{\mathrm{n}} / \mathrm{n}!\quad[\text { for for } \mathrm{n}=0 \text { to } \infty] \\
& =\mathrm{e}^{-x}\left[x+2 x^{2} / 2!+3 x^{3} / 3!+\ldots\right] \\
& =\mathrm{e}^{-x}\left[x+x^{2} / 1!+x^{3} / 2!+\ldots\right] \\
& =\mathrm{e}^{-x} x\left[1+x / 1!+x^{2} / 2!+\ldots\right] \\
& =\mathrm{e}^{-x} x \mathrm{e}^{x}=x
\end{aligned}
$$

$\left\langle\mathrm{n}^{2}\right\rangle:$

$$
\begin{aligned}
\left\langle\mathrm{n}^{2}\right\rangle= & \sum \mathrm{n}^{2} \mathrm{P}(\mathrm{n})=\mathrm{e}^{-\mathrm{x}} \sum \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}} / \mathrm{n}! \\
& (\mathrm{x} \partial / \partial \mathrm{x}) \sum \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\Sigma \mathrm{nx} / \mathrm{n}! \\
\Rightarrow & \partial / \partial \mathrm{x}(\mathrm{x} \partial / \partial \mathrm{x}) \Sigma \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\Sigma \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}-1} / \mathrm{n}! \\
\Rightarrow & (\mathrm{x} \partial / \partial \mathrm{x})(\mathrm{x} \partial / \partial \mathrm{x}) \Sigma \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\Sigma \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}} / \mathrm{n}!
\end{aligned}
$$

So, $\Sigma \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=(\mathrm{x} \partial / \partial \mathrm{x})^{2} \mathrm{e}^{\mathrm{x}}=(\mathrm{x} \partial / \partial \mathrm{x}) \mathrm{xe}^{\mathrm{x}}$

$$
=x\left[e^{x}+x e^{x}\right]=e^{x}\left(x^{2}+x\right)
$$

$$
\Rightarrow \quad\left\langle\mathbf{n}^{2}\right\rangle=\mathrm{e}^{-\mathrm{x}} \Sigma \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}} / \mathrm{n}!=\left(\mathrm{x}^{2}+\mathrm{x}\right)
$$

Standard Deviation σ :

$$
\begin{aligned}
\left\langle\mathrm{n}^{2}\right\rangle-\langle\mathrm{n}\rangle^{2} & =\left(\mathrm{x}^{2}+\mathrm{x}\right)-\mathrm{x}^{2} \\
& =\mathrm{x}
\end{aligned}
$$

So, for Poisson Distribution, mean $=$ variance and Standard Deviation $\sigma=\sqrt{X}^{\mathbf{x}}$

Gaussian Distribution (also called the 'Normal Distribution') was introduced by the German mathematician Carl Friedrich Gauss in 1809. This is an example of a continuous Prob. Distribution Function, in contrast to the Binomial and the Poisson distribution. Hence we shall need to introduce the concept of the 'Probability Density' here. Let ' X ' be a parameter and let the probability that the value of X lies between x and $x+d x$ be $\mathbf{P}(\mathbf{x}) \mathbf{d x}$, the $P(x)$ is the Probability Density Function, which is basically, the probability of finding the value of X within a unit interval.

For a Gaussian Probability Distribution Function,

$$
\mathbf{P}(\mathbf{x})=\mathbf{N} \exp \left\{-(\mathbf{x}-\mu)^{2} / 2 \sigma^{2}\right\}
$$

Normalization:

$$
P(x) d x=N \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\} d x
$$

Now, the value of ' X ' must lie somewhere between $-\infty$ and $+\infty$. So the total prob.
$\int \mathrm{P}(\mathrm{x}) \mathrm{dx}$ between these limits must be $1 \Rightarrow$

$$
N \int \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\} d x=I \text {, say }
$$

Subst. first : $(x-\mu)=y$

$$
\begin{aligned}
& \Rightarrow d x=d y \\
& \Rightarrow I=N \int \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y
\end{aligned}
$$

The limits of this integral is $-\infty$ and $+\infty$, but the integrand is clearly an even function. So we can double the integrand and change the limits as : 0 and $+\infty$.

$$
\begin{gathered}
I=2 N \int \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y \\
\text { Next, subst. : } y^{2} / 2 \sigma^{2}=z \Rightarrow y=\sqrt{ } 2 \sigma \mathrm{z}^{1 / 2} \\
\Rightarrow \operatorname{dy}=\sqrt{ } 2 \sigma\left(1 / 2 \mathrm{z}^{-1 / 2}\right) \mathrm{dz} \\
\Rightarrow \mathrm{I}=\sqrt{ } 2 \mathrm{~N} \sigma \int \mathrm{e}^{-\mathrm{z}} \mathrm{z}^{-1 / 2} \mathrm{dz}
\end{gathered}
$$

We identify the integral over z as $\Gamma(1 / 2)$, the value of which is $\sqrt{ } \pi$.

$$
\begin{aligned}
& \quad \Gamma(\mathrm{n})=\int \mathrm{e}^{-\mathrm{z}} \mathrm{z}^{\mathrm{n}-1} \mathrm{dz} \text {, between the limits : } 0 \text { and }+\infty . \\
& \Rightarrow \mathrm{I}=\sqrt{ }(2 \pi) \mathrm{N} \sigma \\
& \text { So, for } \mathrm{I} \text { to be unity, } \mathbf{N}=\mathbf{1} / \sqrt{ }(\mathbf{2} \pi) \sigma
\end{aligned}
$$

Mean x :

$$
\begin{aligned}
&\langle x\rangle= \int x P(x) d x=N \int x \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\} d x \\
& \text { Subst. : }(x-\mu)=y \\
& \Rightarrow\langle x\rangle=N \int(y+\mu) \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y
\end{aligned}
$$

Clearly, we can split the above integral into two, The first one, $\int N y \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y$, has an odd integrand and therefore vanish. The second integral equals :

$$
\mathrm{N} \mu \int \exp \left\{-\mathrm{y}^{2} / 2 \sigma^{2}\right\} d y=\mu
$$

Thus, $\langle\mathbf{x}\rangle=\mu$, which furnishes an interpretation of the parameter ' μ '.
Mean x^{2} :

$$
\begin{aligned}
\left\langle x^{2}\right\rangle= & \int x^{2} P(x) d x=N \int x^{2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\} d x \\
& \text { Subst. : }(x-\mu)=y
\end{aligned}
$$

$$
\Rightarrow\left\langle x^{2}\right\rangle=N \int(y+\mu)^{2} \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y
$$

This can be split into three integrals. The last integral :

$$
\mathrm{N} \int \mu^{2} \exp \left\{-y^{2} / 2 \sigma^{2}\right\} d y=\mu^{2}
$$

The second integral : $\mathrm{N} \int(2 \mu \mathrm{y}) \exp \left\{-\mathrm{y}^{2} / 2 \sigma^{2}\right\}$ dy involves an odd function as integrand and therefore vanish.

The first integral $I_{1}=N \int y^{2} \exp \left\{-y^{2} / 2 \sigma^{2}\right\}$ dy, with the limits : $-\infty$ and $+\infty$. Again, we double the integrand to change the limits as: 0 and $+\infty$.
subst. : $\mathrm{y}^{2} / 2 \sigma^{2}=\mathrm{z}$, as before [one may also subst. : $\mathrm{y}^{2} / 2 \sigma^{2}=\mathrm{z}^{2}$]

$$
\begin{aligned}
\Rightarrow \mathrm{y} & =\sqrt{ } 2 \sigma \mathrm{z}^{1 / 2} \\
\Rightarrow \mathrm{dy} & =\sqrt{ } 2 \sigma\left(1 / 2 \mathrm{z}^{-1 / 2}\right) \mathrm{dz} \\
\Rightarrow \mathrm{I}_{1} & \left.=2 \mathrm{~N} \int\left(2 \sigma^{2} \mathrm{z}\right) \mathrm{e}^{-\mathrm{z}}\left(\sigma \mathrm{z}^{-1 / 2} / \sqrt{ } 2\right) \mathrm{dz} \quad \text { [limits being }: \mathbf{0} \text { and } \infty\right] \\
& =2 \sqrt{ } 2 \mathrm{~N} \sigma^{3} \int \mathrm{e}^{-\mathrm{z}} \mathrm{z}^{1 / 2} \mathrm{dz}
\end{aligned}
$$

The integral: $\int \mathrm{e}^{-\mathrm{z}} \mathrm{z}^{1 / 2} \mathrm{dz}=\Gamma(3 / 2)=1 / 2 \Gamma(1 / 2)=\sqrt{ } \pi / 2$.

$$
\Rightarrow \mathrm{I}_{1}=\sqrt{ }(2 \pi) \mathrm{N} \sigma^{3}
$$

We have found above, that $\mathrm{N}=1 / \sqrt{ }(2 \pi) \sigma \Rightarrow \mathrm{I}_{1}=\sigma^{2}$
So, $\left\langle\mathrm{x}^{2}\right\rangle=\mu^{2}+\sigma^{2},\langle\mathrm{x}\rangle=\mu$
\Rightarrow variance : $\left\langle\mathbf{x}^{2}\right\rangle-\langle\mathrm{x}\rangle^{2}=\sigma^{2}$
and standard deviation $=\sqrt{ }($ variance $)=\sigma$

Problem Set on Probability Distributions

1. The probability that a drunkard takes a step towards right is 75% of and that towards left is 25%. If the step length is 1 meter, What is the probability that he will reach a distance of 2 meters towards right after a set of four steps?
2. The probability of a thunder storm on a day is 20% in the month of April. What is the probability that we shall have :
(i) Exactly 5 thunder storms in that month?
(ii) Exactly 6 thunder storms in that month ?
(iii) At least 4 thunder storms in that month ?
(iv) At most 24 thunder storms in that month?
3. 'Mode' is defined as the value of ' x ' with the max. frequency (probability), when the x -values are arranged in order. Find the mode of the Binomial distribution if :
(i) $\mathrm{p}=1 / 4$, (ii) $\mathrm{p}=1 / 2$.
4. A number of identical bottles kept in the open, are collecting rain water. The average Number of drops collected in one bottle is $10(\mathrm{~Np}=10)$. What is the probability that a particular bottle collects 20 drops?
5. Find the 'mode' (maximum) in a Gaussian Distribution.
6. The 'point of inflection' of a curve is a point where the curvature changes sign. For the curves of well-behaved functions, it requires (as a necessary cond.) that the second derivative of the function vanishes. On the basis of that, find the point of inflection of the Gaussian Distribution Function.
