


POWDER METHOD

In the Bragg method, one has to use a fairly large crystal with flat faces carefully
oriented in a number of specific directions. All crystalline substances are not
awvailable in the above needed form. Another method, which is very convenient
to handle, was developed independently by IDebwye and Scherrer, and Hull. In
this method, Known as the powder method, the given substance is taken in
powder formm in a thin-walled capillary tube. It is then irradiated - with -
monochromatic X-rayvs. The particles in the powder act as tiny crystals and are .
randomly oriented with respect to the incident X-rays. Since the powder contains
a wvery large number of particles, it is possible that some particles will have their
(100) planes correctly oriented so that the Bragg equation is satisfied. Some
others will have their (1 liﬂ} planes properly oriented, while there may be some
with their ¢111) planes properly oriented and so on. Thus, the powder provides
all vypes of lattice planes Tfor the reflection of X-ra}-'é. and hence mayw be considered
equivalent to a single crystal rotated not only about one axis, but -about all
possible axes at once. - - - '




Experimental Set-up

Fig. 3.14.1 Diffraction
of X-ray by a set of
parallel planes

Consider a set of parallel planes making an angle & with the incident beam of
X -rays as shown in Fig. 3.14.1. The reflected beam from these planes will make
an angle 26 with the unreflected beam. Now, if these planes are rotated around
the incident beam, keeping angle @ constant, it is obvious that the diffracted
beam will travel over the surface of a cone as shown in Fig. 3.14.2a. Since in"
the powder, a large number of crystals with all types of ortentations are available,
the above criterion of a crystal to be rotated around the incident beam is

‘ncident beam | M/ undiffracted beam

automatically achieved. Thus, one gets a cone of reflected X-rays corresponding
to each and every space lattice planes. If a narrow beam of film is now curved
into a cylinder around the capillary tube in such a way that the latter lies along
“the axis-of the cylinder, the diffracted beam will leave impressions on the film
in the form of either curved or straight lines which on removing would give the
diffraction pattern very similar to the one shown in Fig. 3.14.2b. The big holes
in the film correspond to the places where the X-ray beam enters or leaves it



Fig. 3.14.2 (a) X-ray
diffraction by a
powdered sample. (b)

Diffraction impressions
on the film

(a)

{b}é( | ,:,) ( Gﬁf )%

If 5 is the distance of a diffracted beam from the centre of the hole and

r is the distance of the film from the capillary tube, the angle 26 of the diffracted
beam with the unreflected beam can be calculated using the expression
26 = s/r. From this, the incident angle @ of X-rays with the planes can be

determined. Thus, knowulg the wavelength A of X- -rays, we can calculate the
interplanar spacing d,,, using the Bragg equation




Criterion for In order to obtain sharp diffraction lines of uniform thickness, the tiny crystals

Obtaining Sharp in the powder must have average dimensions of a few microns. If the crystals

Diffraction Lines are too large, relatively few of them will contribute to a diffraction line and thus
the diffraction pattern will consist of a discontinuous set of spots. If the crystals
are too small, the diffraction lines become broadened. This is due to the fact that
as the size of a crystal decreases, the number of its lattice planes and thus the
extent of the orderly arrangement also decreases. The powder method is useful
for the crystal systems that have only one or two lattice parameters to be
dctcrminced (cubic, tctragonal, hexagonal "and rhombohedral systems),

A powder diffraction patiterm for a given substance was obtained using :3{ -rays from a Cu

target where A = 154 pm. The distance from the capillary to the film was 5.0 cm. Diffracted

lines were obtained, two of which were at distances 1.2 and 3.4 cm from the undeflected
beam. Calculate the spacings for the planes that give rise to these lines.

Since in the powder method, the diffracted line is observed at angle 26 from the incident
beam, it is obwvious that 28 = s/r, where 5 is the distance of the diffracted beam from the
undiffracted one and » is the distance of the filim from the capillary tube.

Thus, E-E!l.i’radi&n = 2 = 1—'2&1‘— ) _
F S crm
1.2 180~
= —— radian = ﬂ*IZrad:lanL-* . 12 radian = .9
o % = 3o ¢ M = radian ]
For second line &, = 1'5-|'.,.5‘”r
Taking the sine of &, and &,, we get ] i
sin 8, = 0. 120 and sin 28, = 0.334
Substitl_Jting these in the Brageg eguation., we hawve
154 pim 154 pm
= = A | A = - = 230
1T Zro.120) P e + 7 2(0.334) s




DIFFRACTION PATTERN OF A CUBIC SYSTEM

Basic Equation .Since for a cubic crystal

(s
(h* + k2 + 19V
the Bragg’s equation _

A = (3.15.1)

()

becomes A = 2 sin &
(A2 + kP 122 e
A%
or sinlghﬂ = —z(hz + k% + 0%
4
or sin® Oy = K(h* + k% + 17) | (3.15.2)
where K = A%/4a?. This has a Cﬂ]lStEl]'lt value fc'.-r a given cubic cr}rﬂta] and for

a given wavelength A of X-rays.
Eguation (3.15.2% can be used to prﬂm-:t the diffraction patterns for the
three types of cubic systems. These are described in the following.



Primitive Cubic
Lattice

By assigning consecutive integral values (0, 1, 2, ...) to A, k and [, we can |
calculate a series of values of dy;; and sin Bb}r usmg Eqs (3.15.1) and (3.15. 2) :

‘respectively. These are listed in Table 3.15.1

(It can be noted that sin®@ cannot have the value of TK because there is

‘no way in which the integer 7 can be written in the form of hz + kz + Iz ‘This
_ 15 also true of the integers 15, 23, 28, etc.) '

We will observe diffraction lines at angles listed in Table 3.15.1. Thus, the
predicted diffraction pattern. consists of a set of six lines which are equally
spaced when plotted against sin’@ followed by a gap and then another series of
lines. The observation of such a set of diffraction lines shows_directly that the -

- crystal under study has a primitive cubic lattice.

Table 3.15.1 Interplanar Distances and the Corresponding E‘.xpe:cte,d Angles of lefractmn
for a Primitive Cuh-lc Lattice

. 221:
hikl 100 110 111 200 210 211 220 300 310 311 - 222 320 .

a o L L (] (]

o L) a .ﬂ o
d a 2 . “ .
" V2 3 2 5 .Js 220 3 o Jin iz i
sin"9 K 2K 3K 4K 5K 6K 8K 9K 10K 11K 12K 13K




Body-Centred Cubic
Lattice

Face-Centred Cubic

The patterns of lines expected from face-centred and body-centred lattices are
different from the pattern of primitive cubic lattice. '
It can be seen from Fig. (3.9.3) that in (100) planes of a body- centred
lattice, only half of the atoms lie in these planes, the remainder lie in the (200)
planes which are located half-way between adjacent (100) planes. As a
consequence of this, the X-rays scattered at the Bragg angle for reflection from
the (100} planes will be out of phase with those scattered by the (200} planes,

with the result that destructive interference will occur, and the diffraction line

corresponding to the (100) planes will be absent. On the other hand. at the Bragg

~ angle for reflection from the (200) planes all scattered X-rays will be in phase
and thus a strong diffraction line will be observed.

It can be shown, in general, that for a body-centred cubic lattlce all
diffraction lines for which (h + k + [I) is an odd integer must be absent.’ Thus
we will observe diffraction lines ‘at angles listed in Table 3.15.2.

- Again from Fig. 3.9.3, it can be seen that only half the atoms llE- in the (1[}[}}
and the (110) planes. Thus, it is expected that the diffraction from these planes
.will be absent. On the other hand, all atoms lie in (111}, (200) and (220)




Table 3.15.3 - Angles at which Diffraction Lines are Observed for a Face-Centred Cubic

Lattice
: 221
fuicl 100 110 111 200 210 211 220 300 310 311 222
Ahri —= — e g
V3 2 - 2-J2 Y11 V12
sin*8 3K 4K 8K 11K 12K
Summary of The predicted patterns for three types of cubic lattices are also shown in
Diffraction Pattern Fig. 3.15.1.
for Cubic Systems
— = — — = — = 3 = — L | = — =
Planes = = = 8 O o= & &3 = = & &8 £ F
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K
e
amitve || [ N B B |

Fig. 3.15.1 A typical
X-ray diffraction pattern § -

of a cubic system (The Face _ | ' - |
presence of a reflection is
indicated by a line)

Body - | . | | |

1K 2K 3K 4K 5K 6K 7K BK 9K 10K 11K 12K 13K 14K 15K 16K



Importance of The difference between the three diffraction patterns clearly indicates the
Missing Reflections = usefulness of missing reflections in distinguishing different lattice types. In
general, the search for missing reflections is an important step in the determination
of crystal structures. It may be mentioned, however, that the distinction between
the primitive and the body-centred cubic systems cannot be made on the basis

of the first six lines, since spacing of the lines: in the individual diffraction
pattern will be same (K in case of primitive and ‘2K in body-centred). If more
lines are included only then the distinction can be made since, in the primitive
structure, there will be a gap after the sixth line whereas no such gap will be
observed in the body-centred cubic system.

Computing Edge Once the diffraction pattern has been identified, it is then possible to assign each
Length of Unit Cell and every line with the correct values of h, k, and /. From the measurement of"

& for any one of these llnﬂs, the edge length a of the cube can be cnm]}uted from
the equation

1 2 2 212
= he+k+1
¢ Esinﬁ"w( )

If the indexing of the lines has been done correctly, the same value of a
will be obtained from all values of sin &;,.



Solution (a) Tvpe of cubic crystal _
a 19.08° 22.17° 32.26° 38.74"° 40.82° 49.00°

sin & 0.326 8 0.377 3 0.533 8 0.625 7 0.653 &6 0.754 7
sin” @ 0.106 7 0.142 4 0.284 8 0.391 5 0.427 2 0.569 7
3K 4K SK 11K 16K

where K = (.035 6
Thus, silver crystallizes in the face-centred cubic lattice.
(b) The edge-length of the cube can be calculated from the following expression.

o A JZ + 12 +1%)
2 sin Bgp;

The reflection at 19-(_]8“ is due to (111} planes. Hence
154.1 pm -J > ;
' 1

&= +12 +1% =408.6 prn
2x0.3268 |
(c) Distance between (111) planes is
dyyy = 408.6 pm —2359pm

J3



in a face-centred lattice, the reflection of X-rays will occur from the planes for which the
Miller indices (&N are either all even or all odd. Thus, we will hawve reﬂe:cunns from (11 1),
(200), (2200, (311), (222, (400), etc., planes

-For a cubic crystal, we hawve -

. A 2 . a2 2 L2
= —— (R + kT + 1
sin & 5 (™ _ 2

' Thﬁs, the diffraction pattern of Au will exhibit reflections at the following angles:

'—= Plane ) ) sin & - E
' NEY) 1.732¢(154 pm) . -
_ — = 0.3280
.111 'Eﬂ 2(407 pm) ] . 19° 9
A _ (154pm) a )
200 | a (407 pm) =0.378 22° 14
220 L ~ZA _ 141 1S 'F““:" - 0_5350 32° 52°
J11A 3_-317{154 pm) . -
—— 7" = % = 0. 4 : o -
3"1‘_1 2ex 2(407 pm) o 62?_ 87 51
| J1ZA 3.464(154 pm) | s
F22 _ 2a 2(407 pm) = 0.6554 U sl
400 0 MIeA _ 4dSd4pm) _ g 568

2a 2(407 prm) e




a) Ij-’pﬂ of cubic crvstal

- Angle

21.65°
25.21°
37.06°
44.96°

47T 587
Taking the ratios of sin® &, we ge:t

0.136 1 : 0.181 3
or 3 x 0.045 : 4 x {}{}4_5
that is, 3K - a4aK : BK : 11K :

From these ratios, it is obwvious that copper has facﬂ-::entred cubic crystal.

Calculating sin® 8, we have

sin & sine
0368 9 0.136 1
‘0425 B - - 0.181 3
0.602 4 o 0.362 9
0706 5 - D499 1
0738 1 0.544 8

- 0.362 9 - 1::499 1 : 0.544 8

&3:-:1:1.[145 - 11 x 0.045 -
12K, where K = 0.045

{b) I..engrh of the .ﬂde af I&E wriit cell Since

K =

;LZ
4a®

12 = 0.045



therefore,

12 '
A2 _ A 154.05 pm 154.05 pm
— — - _— P — = 353—2 Pm
4K 2 JK 2 x ~/0.045 2 x 02121
f_n::_J Avogadro constant Since
P =—. therefore, Nay = —5
N 5 . o Sl

Substituting the values, we have

. | A(63.54 & mol—1)

N, = = 6.02 % 10 mol™!
(3632 % 1070 cm)(8.812 g cm ) ”

(d) Radius of Cu atorr  In a face-centred cubic lattice, atoms touch one another along the
face-diagonal of the cubic unit call. ' '

Therefore,
A4r = 2a or o= N 2a
4
Substituting the values, we have
R (1.414) (363.2 pm) — 128.3 pm

£




Data from
Diffraction Pattern

Fig. 3.16.1 Diffraction
pattern (only schematic)
of sodium chloride

Type of Cubic
Lattice

CRYSTAL STRUCTURE OF SODIUM CHLORIDE

The unit lattice of sodium chloride, like the macroscopic crystal, must be a cube
and thus the sodium and chloride 1ons must be arranged in some combination
of only three possible space-lattices.

Schematic representation of the powder pattern of sndmm chloride is given in
Fig. 3.16.1.

Table 3.16.1 Records values of the angle 6, sin 6, sin® @ and the relative
intensities for some of the lines of NaCl using K, line from palladium.

333,511
440

= e
-] —
L I 4]

. ]

It is c-b'.v-i.nus from the fifth ;::;Diumn of Table 3.16.1 that NaCl crystal must belong
to the face-centred cubic crystal. Designation of the plane as given in the first
column’ follows this recognition. This can also be checked by finding out the

ratio of the first three planes (200); (220) _and (111). This ratio is’

_ 420
— 420
422




Table 3.16.%

Details of Diffraction Pattern of INacC’l

Relfcarive

| Planes O/degree sire O sirrt 3 0.002
frrensiries
111 5.2 o091 OO0 2 3K 90O
200 5.9 O.103 0.010 & A4 K 1O
220 8.4 0.146 0.021 3 SK S50.4
311 =B.7 O, 151 D022 8 11K
222 10.5 D. 182 D033 o6 12K _ 33.1 Second order N
i - reflectiom of (111
333 15.8 O 273 Q074 S 2T K 0O.58 Third order
' : - reflection of (111)
s I | 21.3 O. 3654 0.132 5 48K 2.82 Fourth order
_ ) reflection of (111%
555 27.1 D455 0.207 O TSR - 0O.14 Fifth order
_ reflection of (111
400 11.9 0.208 0.043 2 16K 19.90 Second order .
reflection of (2000
SO0 18 O, 200 0095 S5 c Y. 4 .87 Third order
reflection of (2000
"800 24.3 0412 0.169 7 64K 0. 79 Fourth order
reflection of (200)
440 17.0 0. 292 0.085 3 32K : G.10 Second order
' ' reflection of (220)
660 26 0.438 0.191 8 T2K 0.71 Third order

reflection of (220) -




1 1 1
sin (5.9°) sin (8.4°)  sin (5.2°)
1 1 1
0.103  0.146 0.090 6
=1:0.705:1.137

dong o 1 dy1 =

This agrees with the theoretical ratio given in Section 3.10, thus confirming
the existence of the face-centred cubic crystal system. The indicated indexing
of the diffraction lines also lead to a single value of the edge length of the unit
cube. Thus, sodium and -:::hls::-nde: 10Ons are arrangf:d in a crystal as a face- ce:nl:r&d
citbic lattice. - ¥ - :

The actual. arra:nge:ment of Na* and Cl1 in this face-centred cubic lattice can be
determined bwv the relative intensities of the reflection maxima f’:::-r the different
orders and planes.

[

The intensity of a diffracted beam depends uwpon two factors:

(1) Number of elecrrons i the arorr The scattering power of atoms for
> -—ray depends on the number of electrons in the atom and is roughly proportional
o the atomic number. .

(ii) The order of diffracrior: Intensity decreases in a definite manner with
increase in the order of reflection.

It can be seen from Table 3.16.1 that in the 200 ) and (220) planes the:
intensities decrease progressively with order.

n - 1 2 3 4

C2000) : 100 19 .90 4.87 O.79
(220 S0.4 &.10 0.71 -



Fig. 3.16.2 Crystal
structure of sodium
chloride, Na' black
circles—located at the
corners of the cube and
at the centre of each of
the six faces; Cl open
circles—Ilocated halfway
between two sodium ions

LIS &y sLCIEialle oLl dss Cdll LS alc- UL TIDCA Dol yUaiilitallvicly DYy - dosUITITEE
that such planes contain equal numbers of sodium and chloride ions. In the
(111) planes, an alternation of intensities i:'a observed.

n 1 2 3 4 5
(111) 9.0 _ 33.1 D.SE_ 2.82 0.14

This can be accounted for by postulating that the planes (-1 11) are composed

alternately of sodium and chloride 1ons.
The possible arrangement which satisfies the above facts is given in

Fig. 3.16.2.

"u.l.f

¥ / —

The structure shown in Fig. 3.16.2 suggests that it consists essentially of

two- interpenetrating faca—ccnued cubic lattices, one cumpnsed entirely of Na*
ions and the other of CI".



Comment - From the above analysis, it is revealed that the designation ‘molecule of sodium
chloride’ loses a great deal of its definitive meaning. It can hardly be said that
any particular chloride ion belongs to any definite sodium ion; rather, each
sodium ion is shared equally by six chloride ions, and each chloride ion by six
sodium ions. All that can be said is that to each sodium corresponds one-sixth
of six chloride ions, so that each sodium has the, equwale:nt -Df a chloride but
not any one ion exclusively.

(i) Using Bragg’'s law, we have -

A _ 58 pm S8 pm
2 sin & 2 sin (5.9) 2x»x0.103

The edge length of the unit cell = 2 = dz.Q? = 563.2 pm
(ii) The wvolume of unit cell = (563.2 pm)° = 1.786 = 10 2% m’.
(iii) Im order w calculate molar volume, we must know the number of molecules of
NaCl which belong to one unit cell. In q:-t"lre: unit ceil of Naﬂl,, we have the following
arrangerments:

(a) Eight Na™ (ﬂr C1™) at the end of edges, each of Whl-l:h is shared by -Eughl such unik
cells. Thus, contribution from the edges is one Na'* (or Cl17).

(b)) Six IWNa™ (or C17) are present in the centres of the faces, each is shared by two cubes,
thus contributing three Na* (or C17) ions.

(c) Twelve Cl {(or Na*) are present along the edges, each of which is shared by four
cubes, thus contributing three Cl (or Na').

= 281.6 pm

'I'l'['l.ls d:m _



{(d) One C1° (or Na') is present at the centre of the cube.

Thus, we have on an average four Na' ions and four C1 ions per unit cell, or a total
egquivalent to four molecules of sodium chloride. The wvolume allotted to these molecules
is the wvolume of one unit cell. Thus, the molar volume is given by

1 i 1L 11
v o= volume o jne. unit ce < I a

28 =
= EI'TEEK;D m~) » (G022 1022 ml::rl_]}
= 2.689 % 10> m = mol™!

(iv) The density of INaCl is

M _ (58.443 g mol 1)
v (2.689 % 1077 m> mol 1)

=2.173 > 10° gm™— =2.173 g crm

P=




