
Second Law of Thermodynamics 

 First law of Thermodynamics has taught us, that we cannot get work without a 

supply of energy (for example, burning of fuel) and spending some energy, we can get only 

an equivalent amount of work, not more. Second law of Thermodynamics imposes some 

further restriction. Even after extracting heat from a heat source, we cannot get an 

equivalent amount of work. A fraction of the heat energy extracted has to be deposited to a 

so-called ‘heat sink’ and the remaining part may be converted to work.  

 Kelvin - Planck Statement of 2nd law : It is impossible for a machine, working in 

a cycle, to extract heat from a single source and convert it fully to work. 

 Clausius Statement of 2nd law : It is impossible for a machine to transport heat 

from a low temperature body to a high temperature body, without the aid of external 

work.      

 Although sounds completely different, it can be proved by pure logic, that the two 

versions of second law are actually equivalent. 

 A machine which converts heat energy to work, is called a heat engine. It works 

between two heat reservoirs, and in accordance with the Kelvin – Planck statement, it 

extracts say Q1 amount of heat from the reservoir at higher temperature, deposits Q2 

amount of it to the reservoir at lower temperature and the converts the remaining amount : 

(Q1 – Q2) to work.  

       Thermal efficiency () of an engine is defined as the ratio of the work (W) 

produced to the amount of heat (Q1) extracted from the ‘source’. 

 =  W/Q1 (expressed as a ratio), or W/Q1  100 (expressed as a percentage) 

Carnot Engine 

 Carnot’s engine is an ideal heat engine, which 

consists of a cylinder fitted with a piston that slides 

without friction and filled with an ideal gas. The walls of 

the cylinder and the piston is completely non-conducting, 

while its flat base is perfectly conducting. Clearly 

(because of the restrictions written in bold face), such an 

engine is not realizable in reality. It works in a cycle with 

four steps. The steps are shown in the indicator diagram. 

 Isothermal Expansion : The cylinder is placed on 

an infinite heat source at absolute temperature = T1. The 

gas remains in equilibrium with the source and expands isothermally from (P1, V1)  

to (P2, V2). The work done : W1 =  P dV.  

          PV = nRT1    P = nRT1/V   W1 =  nRT1  dV/V  = nRT1 ln (V2/V1) 

The internal energy of the gas does not change, because, the internal energy of an ideal gas 

depends only on temperature and remains unaltered as long as temperature doesn’t change.  

 So,  U1 = 0 

The energy for performing the external work comes from the heat source.  

Since, U1 = 0,  the heat extracted from the source : Q1 = W1 = nRT1 ln (V2/V1) 

 Adiabatic Expansion : The cylinder is now placed on an insulating surface.  

The gas expands adiabatically from (P2, V2) to (P3, V3). As no heat comes from outside,  

the gas performs work at the cost of its own internal energy and hence cools down to T2. 



 Work done : W2 = nCv (T1T2

 Isothermal Compression : Next, the cylinder is placed on an infinite heat source 

at absolute temperature = T2, called the ‘sink’. The gas is compressed isothermally from 

(P3, V3) to (P4, V4).  

 The work done : W3 = nRT2 ln (V4/V3) =  –  nRT2 ln (V3/V4). 

Note that theW3 is –ve (as V3 > V4)  work is done ‘on the gas’ not ‘by the gas’. 

SinceU3 = 0, again, the heat deposited to the sink : 

 Q2 = W3 = nRT2 ln (V3/V4) 

 Adiabatic Compression : Finally, the cylinder is placed again on an insulating 

surface. The gas is compressed adiabatically from (P4, V4) to (P1, V1). It gets heated up  

From the temperature T2 to T1 and the work done in the process :  

 W4 = nCv (T2T1 

The total work done in the cycle W thus equals :  W1 + W2 + W3 + W4  = W1 + W3  

(as W2 and W4 cancels each other).  

 Now, since the points B and C are on an adiabatic curve : T1 V2 
  – 1 = T2 V3 

  – 1 

            Similarly, as A and D are on an adiabatic curve : T1 V1 
  – 1 = T2 V4 

  – 1 

              (V2 /V1) 
  – 1  =  (V3 /V4) 

  – 1   

              ln (V2/V1)  =  ln (V3/V4).   

             W =  nRT1 ln (V2/V1) – nRT2 ln (V3/V4)   

                      =  nRT1 ln (V2/V1) – nRT2 ln (V2/V1)  

                      =  nR (T1 –T2) ln (V2/V1) 

            and  Q1 = nRT1 ln (V2/V1).  

Therefore, efficiency   = (T1 –T2)/T1 = (1 – T2/T1). 

The more T1 is increased and T2 is decreased, the more efficient the engine becomes and as  

T1  T2,    0. 

Entropy 

 You may note that though the above process is cyclic, the total work done W  0, 

neither is the total heat exchange (Q1 – Q2). This is a reflection of the fact that dW and dQ 

are not exact differentials. In other words, their integrals around a closed loop, do not 

vanish. However, for Carnot cycle,   

 Q1/T1 – Q2/T2 = nR ln (V2/V1) – nR ln (V2/V1) = 0. 

If we define : dS = dQ/T, then the total change in the quantity ‘S’ = dQ/T = 0, around the 

closed loop, showing that dS is an ‘exact differential’. We call ‘S’ as ‘Entropy’ (dS is a 

small change in entropy). 

This is an abstract definition. Later on, we shall see, that physically, entropy measures the 

‘disorder’ within a system.  

   

 


