
Eigen value Problem 

 

A square matrix ‘M’, acting on a column matrix (vector) ‘x’, usually changes both the 

magnitude and direction of ‘x’. If, in some special case, the action of ‘M’ only changes the 

magnitude of ‘x’ by a factor, say ‘’, we call ‘x’ to be an eigen vector of M, corresponding to 

the eigen value  : 

M x =  x  ---- (1) 

                                      M x =  I x, where I is the identity matrix 

                                      (M –  I) x = 0, where RHS is a zero column matrix 

We seek a non-zero solution for ‘x’, because ‘x = 0’ satisfies the equation ‘Mx = x’, for all ‘M’ 

and all ‘’ trivially.  

However, if the matrix (M –  I) = N has an inverse, then Nx = 0    N– 1 Nx = 0   x = 0. 

So, ‘N’ must not have an inverse. That is possible only if  

det N = det | M –  I| = 0.  ----- (2) 

Eqn.(2) is called the ‘characteristic or the secular eqn.’ and the determinant is called ‘the 

secular determinant’. If the matrix ‘M’ is n  n, eqn.(2) is a n-th degree equation in ‘’ and  

it will have ‘n’ roots, which may not be all different. For example, the roots for a 3  3 matrix 

may be 1, 1, 2.  

The number of times a root of the chaarceristic eqn. is repeated, is called the 

‘algebraic multiplicity’of that root.  

The ‘algebraic multiplicity’ of the root ‘1’ in the above example is 2. 

   Substituting one of the values of in eqn.(1), we can find the corresponding eigen  

vector ‘x’. One may have more than one linearly independent eigen vectors for one ‘’.  

The number of linearly independent eigen vectors for an eigen value ‘’ is called its 

‘degeneracy’ or, ‘geometric multiplicity’.  

  Geometric multiplicity is always less than or equal to the algebraic multiplicity. 

Example 1 :  

 Find the eigen values and normalized eigen vectors of the matrix  :  0    – i   0  

                                                                                                                         i       0   0   

                                                                                                                         0      0   0  

The characteristic eqn. is :  0 –      – i    0   =  0     ( 

                                            i       0 –     0  

                                            0      0     0 –   

   

Eigen vectors : 

 For   0    – i   0    x1  =  x1      –  i y1 = x1  ---- (a) 

                                i       0   0    y1      y1              i x1 = y1  ---- (b) 

                                0      0   0    z1      z1                  0 = z1  ---- (c) 

Note that we cannot determine x1, y1, z1 completely, but only find their ratio.  

If we choose x1 = c,  both (a) and (b)    y1 = ic  and  (c)    z1 = 0 

 



Thus the eigen vector looks like :  c  .   

                                                       ic      

                                                       0    

Since this is a complex vector, its norm (magnitude) is given by : {|c|2 + |ic|2 + 0}½ = 2c. 

Hence, the normalized eigen vector is :   1/2 1 .   

                                                                          i       

                                                                          0   
     

Similarly, for , we have   :  – i y2 = – x2  ---- (d) 

                                                             i x2  =  – y2  ---- (e) 

                                                                0  =  –  z2  ---- (f)  

If we choose x2 = c,  both (d) and (e)    y2 =  – ic  and  (f)    z2 = 0. 

Its norm (magnitude) is given by : {|c|2 + | – ic|2 + 0}½ = 2c 

Hence, the normalized eigen vector is :  1/2   1 .   

                                                                         – i      

                                                                           0 

Finally, for for , we have   :  – i y3 = 0  ---- (g) 

                                                           i x3 = 0  ---- (h) 

                                                              0 =  0  ---- (i)  

Both (g) and (h)    x3 = y3 = 0  and  eqn.(i) is a ‘blank’ eqn., imposing no restriction at all. 

If we choose z3 = c, 

the norm of the vector is also c and the normalized eigen vector is :  0 .   

                                                                                                                0      

                                                                                                                1 
       

Similarity Transformation : 

 The transformation of a matrix M  P – 1 M P is called a ‘similarity transformation’. 

Many property of the matrix M is maintained under such a transformation. 

(i) det | P – 1 M P|  =  det |P – 1|  det |M|  det |P| 

=  det | P – 1|  det |P |  det |M|  

=  det | P – 1P|  det |M| 

=  det | I |  det |M|  = =  det |M| 

(ii) Tr (P – 1 M P)   [Trace of a matrix M is the sum of its diagonal elements : i Mii ] 

=  i (P – 1M P)ii 

=  ijk (P – 1)ij (M)jk (P)ki 

=  ijk (P)ki (P – 1)ij (M)jk 

=  k (P P – 1M)kk  =  k (M)kk  = Tr M      

(iii) If M x =  x,  then  P – 1 M x =  P – 1 x 

                            P – 1 M (PP – 1) x =  P – 1 x 

                            P – 1 M P (P – 1 x) =  (P – 1 x) 

Thus, the eigen vector x  (P – 1 x), while the eigen value remains the same. 

 



Diagonalizing Matrix : 

 A matrix ‘P’, constructed by making the eigen vectors of ‘M’ stand side by side, is called 

the diagonalizing matrix for M. In the above example :  P  =   1/2    1/2     0 .   

                                                                                                   i/2   – i/2     0    

                                                                                                     0           0       1   

is the diagonalizing matrix for   M  =  0    – i   0  . 

                                                             i       0   0   

                                                             0      0   0  

You may check that P – 1 M P  =   1     0   0  . 

                                                       0  – 1   0   

                                                       0     0   0  

 

 

   



Types of Matrices 

 

1) A matrix M is called ‘symmetric’ if : MT = M 

2) A matrix M is called ‘anti-symmetric’ or ‘skew-symmetric’ if : MT =  – M 

3) A matrix M is called ‘orthogonal’ if : MT = M– 1, i.e., MT M = M MT = I 

4) A matrix M is called ‘Hermitian’ if : M† = M 

5) A matrix M is called ‘anti-Hermitian’ or ‘skew-Hermitian’ if : M† =  – M 

6) A matrix M is called ‘unitry’ if : M† = M– 1, i.e., M† M = M M† = I 

Theorems :  

1. The eigen values of a unitary matrix satisfies the eqn.  | 1.  

Proof :  

                 Let   

                                                  M X  =  X,  ---- (1)  

where M is a unitary matrix with eigenvalue  and the corresponding eigenvector X.  

Taking the Hermitian adjoint of both sides :   

                                                  X† M†  =  X†,  ---- (2) 

where * symbolizes complex conjugation. Multiplying : 

                                   (X† M†) (M X)  =    (X† X)  =  |(X† X), 

 but    

                                   (M† M) = I    (X† X)  =   | (X† X), 

                                                        (| – 1) (X† X) = 0 

Now, (X† X) cannot be zero unless X = 0  

                                                        | = 1,  or,  is of the form  ei. 

 

2. All eigenvalues of a Hermitian matrix are real. 

Proof :  

                 Let   

                                                  M X  =  X,  ---- (1)  

where M is a Hermitian matrix with eigenvalue  and the corresponding eigenvector X.  

Taking the Hermitian adjoint of both sides :   

                                                  X† M†  =  X†,  

                      but,  M† = M    X† M  =  X†,  ---- (2) 

Multiplying (1) with X† from left :  

                                                  X† M X = X† X)  ---- (3) 

Multiplying (2) with X from right :  

                                                  X† M X = X† X)  ---- (4) 

Subtracting (3) from (4) : 

                                                  0  =  (– ) (X† X)   

Now, (X† X) cannot be zero unless X = 0 

                                              = , i.e.,isreal.  

 



3. The eigenvalues of a skew-Hermitian matrix are purely imaginary, or zero. 

Proof :  

                 Let   

                                                  M X  =  X,  ---- (1)  

where M is a skew-Hermitian matrix with eigenvalue  and the corresponding eigenvector X. 

Taking the Hermitian adjoint of both sides :   

                                                  X† M†  =  X†,  

                but,  M† =  –  M    X† M  =  – X†,  ---- (2) 

Multiplying (1) with X† from left :  

                                                  X† M X = X† X)  ---- (3) 

Multiplying (2) with X from right :  

                                                  X† M X = – X† X)  ---- (4) 

Subtracting (3) from (4) : 

                                                  0  =  (+ ) (X† X)   

Now, (X† X) cannot be zero unless X = 0 

                                              = – , i.e.,is purely imaginary, or zero.  

 

4. The eigen vectors of a Hermitian matrix corresponding to different eigen values  

are orthogonal. 

Proof :  

                 Let   

                                                  M X1  =  X1,  ---- (1) 

                                                  M X2  =  X2,  ---- (2) 

where M is a Hermitian matrix,  X1 is an eigen vector, corresponding to the eigen value   

and X2 is an eigen vector, corresponding to the eigen value .  

Taking the Hermitian adjoint of both sides of (2) :   

                                                  X2
† M†  =  X2

†,  

                                          but,  M† = M  and  

                                              X2
† M  =  X2

†,  ---- (3) 

Multiplying (1) with X2
† from left :  

                                                  X2
† M X1 = X2

† X1)  ---- (4) 

Multiplying (3) with X1
 from right :  

                                                  X2
† M X1 = X2

† X1)  ---- (5) 

Subtracting (4) from (5) : 

                                                  0  =  (– ) (X2
† X1)   

                    Now,       (X2
† X1) = 0, i.e.,X1 and X2 are orthogonal.  

 

5. The eigen vectors of a skew-Hermitian matrix corresponding to different eigen 

values are also orthogonal. 

Proof :  

                 Let   

                                                  M X1  =  X1,  ---- (1) 

                                                  M X2  =  X2,  ---- (2) 



where M is a skew-Hermitian matrix,  X1 is an eigen vector, corresponding to the eigen value 

 and X2 is an eigen vector, corresponding to the eigen value .  

Taking the Hermitian adjoint of both sides of (2) :   

                                                  X2
† M†  =  X2

†,  

                                          but,  M† =  – M  and  – 

                                              X2
† M  =  X2

†,  ---- (3) 

Multiplying (1) with X2
† from left :  

                                                  X2
† M X1 = X2

† X1)  ---- (4) 

Multiplying (3) with X1
 from right :  

                                                  X2
† M X1 = X2

† X1)  ---- (5) 

Subtracting (4) from (5) : 

                                                  0  =  (– ) (X2
† X1)   

                    Now,       (X2
† X1) = 0, i.e.,X1 and X2 are orthogonal.  

 

1. The eigen vectors of a unitary matrix corresponding to different eigen values are 

also orthogonal. 

Proof :  

                 Let   

                                                  M X1  =  X1,  ---- (1) 

                                                  M X2  =  X2,  ---- (2) 

where M is a unitary matrix,  X1 is an eigen vector, corresponding to the eigen value  and 

X2 is an eigen vector, corresponding to the eigen value .  

Taking the Hermitian adjoint of both sides of (2) :   

                                                  X2
† M†  =  X2

†,  ---- (3) 

where * symbolizes complex conjugation. Multiplying both sides of (3) and (1) : 

                                   (X2
† M†) (M X1)  =    (X2

† X1) 

 but    

                                   (M† M) = I    (X2
† X1)  =    (X2

† X1)                                                      

  (  – 1) (X2
† X1) = 0 

Now, if  1 = exp (i  and  2 = exp (i,where  2, then   

                                     1 

                               (X2
† X1) = 0, i.e.,X1 and X2 are orthogonal 


