
Magnetism 

 

        If a particle having a magnetic moment  is placed in a magnetic field B,its energy is 

given by 

                 E =  –  = – z (If B is in the z-direction). 

Let us first find a method for calculating the average of z. If z takes a value i in the i-th state 

of the particle, its Partition Function will be given by : 

ziexp (+ iB)   

           (ln z)/ (1/z) z/iiexp (+ iB) / z   

         (1/)  (ln z)/iiexp (+ iB) / z   

iiexp (– Ei) / iexp (– Ei)  

 

The above equation  is a key result in the theory of magnetism. 

 

Langevin Problem 

This problem deals with a paramagnetic substance, with the molecules having an intrinsic 

magnetic dipole moment m, placed in an external magnetic field B. Classically, the dipoles can be 

oriented in any direction in space. (No space quantization).  If we chose our z-axis in the direction 

of the magnetic field, a small solid angle with the tail of the dipole as origin, is given by : 

                                   d =  dS/r2  =  sin d d 

Theoretically, there are infinite number of possible directions, even within this small solid angle. 

However, we assume that the number of possible orientations of the dipole within this solid angle 

is proportional to the solid angle. Each orientation defines a state of the dipoles (apart from its 

other parameters, like position, momentum, etc.) Therefore the no. of states within d is : 

                                   A dsin d d 

The energy of a magnetic dipole m in a magnetic field B is given by : 

                                   E  =  – m ∙ B =  –  mB cos. 

Therefore, each of the above states have energy. Thus the Partition Function is given by : 

                                   z  =   sin d de + mB cos, 

where the sum over states has become an integral. Integrating over ‘’  : 

                                   z  =  A sin d e mB cos. 

[ Actually, sin dgives the solid angle generated by two cones with semi-

vertical angles and + d, with the tail of the dipole as origin. So, the no. of  

states within this solid angle = Asin d 

              Substitute  :  mB cos =  u    du =  –  mB sin d 

If   = 0,  u = mB  and if   = ,  u = – mB 

z  =  –  (A/mB) eudu  [within the limits mB  and  – mB ] 

                       = + (A/mB) [e mB – e – mB]  = A sinh (mB) / mB ,     

             since,  sinh x = (ex – e– x) /2. 

Now, in general, the Partition Function for a magnetic dipole, placed in a magnetic field in the 

z-direction is given by :  z = e + mB cos. Therefore, the average magnetic moment in the 

z-direction :  mz = m cos =  (1/)  (ln z)/ B. 

               In this case,  ln z  =  ln (A) + ln sinh (mB) – ln (mB) 



                               mz  =  m [ coth (mB) – 1/(mB) ]. 

The function : [coth (x) – 1/x] is called the Langevin function. 

Low Temp / Strong field limit : 

If  T  0,  or equivalently,  B  ,  x = (mB/KT)   

                                emB/KT   ,  e– mB/KT   0, 

                                coth (mB/KT ) = (emB/KT + e– mB/KT) / (emB/KT –  e– mB/KT)    
                                                                                    emB/KT / emB/KT  =  1 

                        and  1/x = (KT/MB)    0. 

                              mz    m 

This means, all the dipoles are oriented along the magnetic field (magnetic saturation). 

High Temp / Weak field limit : 

If  T  ,  or equivalently,  B  0,  x = (mB/KT)  0 

                             ex    1 + x + x2/2 + x3/6,  e– x    1 –  x + x2/2 – x3/6 , 

                             (ex + e– x) / (ex – e– x)     (1 + x2/2) / (x + x3/6)   

                                                                               (1 + x2/2)/x  [1 + x2/6]– 1     

                                                                                (1/x + x/2)  [1 – x2/6]     

                                                                                (1/x + x/2 – x/6)   (1/x + x/3)       

 Check that, if you approximate :  ex    1 + x  and  e– x    1 –  x,  coth x would cancel 1/x 

and you would get a zero result. 

 if you approximate :  ex    1 + x + x2/2   and  e– x    1 –  x + x2/2,  you would miss a 

contribution O(x), if get a wrong coefficient of x.       

                 [coth x – 1/x]    x/3,  which  0 linearly as x = (mB/KT)  0   

                             mz    m (mB/3KT). 

For ‘N’ molecules per unit volume, the intensity of magnetization (dipole moment / unit volume)                   

                               Nm2B/3KT   

and the magnetic susceptibility  (intensity of magnetization / unit magnetizing field)   

                               Nm2 /3KT.   

                      Thus,    1/T , which nothing but Curie’s law. 

 

Pauli spin para-magnetism problem 

 

(A free spin - ½ particle, (e–)  in a constant magnetic field (a Quantum Theory) 

If a particle has an angular momentum j, it will have a magnetic moment 

                                                 = g B j, 

where ‘g’ is the Lande g-factor (which equals 2 for a free electron) and ‘B’ is the Bohr Magneton, 

which equals (eħ/2m). Hence, 

                                         E =  – z– gB jz B. 

For a free spin-½ particle, jz =  ½ 



                                     E =  – 2  B  ( ½) B =  – B B,  or  + B B   

                                     z  =  iexp (– Ei)  =  eB B + e– B B   

cosh B B),  since  cosh x = (ex + e– x)/2 

Avg. energy per particle :   

E–  ln z/– (1/z) z/   

                                           z  =  (eB B + e– B B)   

E– B B (eB B – e– B B) / (eB B + e– B B)    

   – B B tanh (B B) 

Avg. magnetic moment per particle along z :   

                                        z  cosh B B),    [from eq.(6)] 

 (ln z)/ (1/z) z/ 

B sinh B B) / cosh B B) B tanh B B)     

For N non-interacting (or rather ‘weakly interacting’) spins, the N-particle Partition Function : 

                           ZN =  zN ,  where  z = eB B + e– B B   [from eq.(6)] 

E–  ln ZN/– N (ln z)/  

– N B B tanh (B B), 

which is just N-times the avg. single particle energy. 

                 Similarly, (ln z)/N B tanh (B B), 

which is again, N-times the avg. magnetic moment per particle. 

 

As B   (strong magnetic field) or     (T  0),   

              exp (– iB)  0    tanh B B) = (eB B – e– B B) / (eB B + e– B B) 

                                             1   

  B   

This signifies magnetic saturation. (All the dipoles are oriented in the direction of the 

magnetic field.   

 

Partition Function for N free spin - ½ particle in a constant magnetic field : 

       If we wish to calculate the N-particle partition (ZN) directly, for this problem, we obtain the 

same result (zN), but in a non-trivial way. 

In the N-particle system, if ‘n’ number of spins point upward and (N – n) spins downward, then the 

total energy becomes : 

                    E =  – n B B + (N – n)B B 

The number ways we can choose the n up-spins out of N is : NCn , which is the degeneracy of the 

above energy value. 

Hence the Partition Function : 

                    ZN  =  NCn e– {– n B B + (N – n)B B} 

                       =  NCn [e
+  B B]n [e– B B](N – n) 

This is clearly, a binomial expansion, leading to the simplification : 

                 ZN = [e+  B B  +  e– B B]N  = zN, 

where ‘z’ is the single-particle Partition Function, as expected. 

 

 

 

Brillouin (ব্রিলওঁয়া) Problem 



 This problem deals with a paramagnetic substance, with the molecules having an angular 

momentum J and hence, a magnetic dipole moment m = g mB J, where J is the resultant of orbital 

angular momentum (L) and spin (S), ‘g’ is the so-called gyromagnetic ratio and mB (= eħ /2m) is 

the Bohr magneton. 

 The molecules are placed in an external magnetic field B. Classically, the dipoles can be 

oriented in any direction in space. However, according to Quantum Mechanics, their orientation 

must be such that ‘Jz’ can take (2J + 1) values :  + J to  – J in steps of ‘1’.  If we chose our z-axis 

in the direction of the magnetic field, the energy of a magnetic dipole m is given by : 

                                   E  =  – m ∙ B =  –  mz B =  – gmB JB,  – gmB (J – 1)B, ∙ ∙ ∙  + gmB JB. 

                                                        =  – x J,  – x (J – 1), ∙ ∙ ∙  + x J,  where x = gmB B. 

(Text books often define x =  gmB BJ) 

The Partition Function therefore equals : 

z = exp(– x J)  +  exp(– x J + x)  +  exp(– x J + 2x)  +  ∙ ∙ ∙  +  exp(+ xJ)   

This is a GP series, with the 1st term (a) =  exp(– x J),  common ratio (r) = exp(x) and 

no. of terms (n) =  (2J + 1).        

Hence,  z  =  a (rn – 1) / (r – 1)  =  exp(– xJ)  [exp{x (2J + 1)} – 1] / [exp (x) – 1]                  

                                                   =  [exp{x (J + 1)} – exp(– x J)] / [exp (x) – 1].                  

Let us pull out a factor exp{x /2} as common, both from the numerator and the denominator. 

         z  =   [exp{x (J + ½)} – exp(– x (J + ½)] / [exp (x/2) – exp (– x/2)] 

                 = sinh {x (J + ½)} / sinh {x/2}.                 

The average magnetic moment in the z-direction :   

                    mz = (1/)  (ln z)/ B 

                mz  =  gmB [(J + ½) coth{x (J + ½)} –  ½ coth{x /2}] 

The function : [(J + ½) coth{x (J + ½)} – ½ gmB  coth{x /2}] is called the Brillouin Function. 

[The usual definition is : [(2J + 1)/2J coth{x (2J + 1)/2J} – 1/2J gmB  coth{x /2J}, 

with x = gmB BJ.  In that case, mz  = gmB JBJ(x)]  

Low Temp / Strong field limit : 

If  T  0,  or equivalently,  B  ,  x = (gmB B)     

Now, as  y  ,  e – y  0    coth(y) = (ey + e – y) / (ey – e – y)    1.                               

  coth{x (J + ½)}  and  coth{x /2}    1. 

  mz    gmB [(J + ½) – ½]  =  gmB J,   

This means, each dipole is oriented along the magnetic field (Jz = J, mz =  gmB J). 

High Temp / Weak field limit : 

If  T  ,  or equivalently,  B  ,  x = (gmB B)   0 



coth (y) = (ey + e– y)/(ey – e– y)  = (1 + y2/2 + - - - ) /  (y + y3/6 + - - - ) 

              = (1 + y2/2 + - - - / y)  [1 + y2/6 + - - - ]– 1 

              = (1 + y2/2 + - - - / y)  [1 – y2/6 + - - - ] 

               (1 + y2/3 + - - - /y)   1/y + y/3 

 BJ(x)  (J + ½)/ [1 /x(J + ½) + (J + ½)x/3] – ½ [2/x + x/6] 

              = 1/x + (J + ½)2 x/3 – 1/x – x/12 

              = (4J2 + 4J) x/12 

              = J(J + 1) x/3                    

  mz    gmB J(J + 1) x/3     =  g2mB
2
 B J(J+1)/3KT.   

 Take J = ½  and calculate z and mz. Check that the results match with those for    

        Pauli Spin Paramagnetism. 

Classical Limit 

 Note that if J is large, the separation between the successive mJ’s (mJ = 1) becomes small 

compared to the total angular momentum, which means that the angular momentum vector may 

make almost all possible angles with the z-axis. Note also, that gmB J = m, which is the magnetic 

moment of a single dipole. Thus, mzm/J)2
 B J(J+1)/3KT mwhich is the 

Langevin limit. 

Ferro-magnetism 

 

Weiss’ Mean Field Theory : 

Weiss suggested that the dipoles within a material, if aligned at least partially, will produce 

a magnetic field, apart from the magnetic field (Bex) applied externally. This field will be 

proportional to the intensity of magnetisation (M) at that particular stage and may be expressed as : 

(M). The total field : B = (Bex + M) will be responsible for aligning the dipoles. 

Substituting in the Brillouin theory : 

            M = N g B J BJ(x), where BJ(x) is the Brillouin function and x = (g BJ B/KT) 

B is now equal to (Bex + M). Thus the above equation contains M both in the left hand and the 

right hand side. We must look for a self consistent solution for M, i.e. the total magnetic field B, 

which depends on the magnetization M, should produce the same value for M. 

In particular, if the external field Bex is switched off, it will be interesting to find whether any non-

zero solution for M is available, i.e., whether the internal field produced by the dipoles themselves 

can maintain their alignment. If available, we call it ‘spontaneous magnetization’. 

In this situation : 

                                     M = N g B J BJ(x), ---- (1) 

where x = g BJ M/KT (since Bex = 0)   M = KT x/(gBJ ---- (2) 

We plot both expressions for M against x and find the 

graphical solution. 

As the temperature increases, the slope of the second 

curve (straight line) increases. At some stage it becomes 

tangential to the first curve (which is essentially the plot 

of the Brillouin function) at the origin. This is the 

highest temperature at which spontaneous 

magnetization is possible. After that, we do not have 

any intersection of the two curves except 

at x = 0. 

Now, BJ(x) = (2J + 1)/2J [coth{(2J + 1)x/2J}] –  (1/2J) [coth(x/2J)] 



Near x = 0,   

coth (x) = (ex + e– x)/(ex – e– x)  = (1 + x2/2 + - - - ) /  (x + x3/6 + - - - ) 

              = (1 + x2/2 + - - - / x)  [1 + x2/6 + - - - ]– 1 

              = (1 + x2/2 + - - - / x)  [1 – x2/6 + - - - ] 

               (1 + x2/3 + - - - /x)   1/x + x/3 

 BJ(x)  (2J + 1)/2J [2J /(2J + 1)x + (2J + 1)x/6J] – (1/2J) [2J/x + x/6J] 

              = x + (2J + 1)2 x/12J2 – x – x/12J2 

              = (4J2 + 4J) x/12J2 

              = (J + 1) x/3J ---- (3) 

The gradient of the tangent to the M vs. x curve, as obtained from (1) is given by : 

             dM/dx = NgB J dBJ /dx, 

Near x = 0, dBJ /dx  (J + 1) /3J [from (3) ]  dM/dx = NgB (J +1) / 3  ---- (4) 

The gradient of the M vs. x straight line curve, as obtained from (2) = KT / (gBJ ---- 

If this exceeds or equals the gradient (4), no non-zero solution for M exists. Thus, the condition for 

obtaining a non-trivial solution is : 

                                   KT/ (gBJ NgB (J +1)/ 3   The critical temperature, above which 

there will no spontaneous magnetization is : 

                                   T = Ng2B
2 J(J +1)/ 3K. 

(Also known as the Curie Temperature). 

Currie-Weiss Law 

 

             If both the external and the internal fields are present, 

                                  M = NgB JBJ(x) NgB(J + 1) x/3J  [from eq.(3)] 

                                       =  NgB( J + 1) /3 × gBJ (Bex + M)/KT 

                                       =  Ng2B
2 J( J + 1) /3KT × (Bex + M) = /T × (Bex + M), 

                        where  Ng2B
2 J( J + 1) /3K 

 /T] =  Bex /T   ] =  Bex 

=  Bex /[T ] 

=  0 /[T ] 

This is Currie-Weiss Law, where TC = Ng2B
2 J( J + 1) /3K 

 

Ferro-magnetism from Langevin Theory 

 

 According to Langevin theory, M = Nm L(x), where ‘N’ is the number of molecules per unit 

volume, ‘m’ is the dipole moment of each individual moelecule and L(x) is he Langevin function of 

x = mB/KT.   

 Following the approach by Weiss, we replace B by (Bex + M), where M is the internal 

field due to the molecular dipoles. Thus, ‘M’ now appears on both sides of the above equation. We 

must find a self consistent solution for M. 

In particular, if the external field Bex is switched off, it will be interesting to find whether any non-

zero solution for M is available, i.e., whether the internal field produced by the dipoles themselves 

can maintain their alignment. If available, we call it ‘spontaneous magnetization’. 

In this situation : 

                                     M = Nm L(x), ---- (1) 

where x = m ()/KT (since Bex = 0)   M = KT x/m---- (2) 

We can plot both expressions for M against x and find the graphical solution. ( 

As the temperature increases, the slope of the second curve (straight line) increases. At some stage 

it becomes tangential to the first curve at the origin. (See the figure in the Brillouin theory for 

Ferro-magnetism).This is the highest temperature at which spontaneous magnetization is possible. 

After that, we do not have any intersection of the two curves except at x = 0. 

If  T  ,  or equivalently,  B  0,  x = (mB/KT)  0 



                             ex    1 + x + x2/2 + x3/6,  e– x    1 –  x + x2/2 – x3/6 , 

                             (ex + e– x) / (ex – e– x)     (1 + x2/2) / (x + x3/6)   

                                                                               (1 + x2/2)/x  [1 + x2/6]– 1     

                                                                               (1/x + x/2)  [1 – x2/6] 

  (1/x + x/2 – x/6)   (1/x + x/3) 

L(x) = coth(x) – 1/x  x/3 

Thus the gradient of the first curve dM/dx = Nm dL/dx near origin = Nm/3, which is to be equated 

with that of the second curve KT/ m.   Nm/3 = KT/m   

 T = Nm2/3K 

 


