
Group velocity and phase velocity: 

Phase velocity: 

Phase velocity of a monochromatic wave is the velocity with which a crest or trough of the wave is 
propagated in a medium. 

For example, let us consider a plane wave propagating in the positive direction of X-axis. If the wave 
is monochromatic, i.e. it has only one frequency component, it will be simple harmonic in nature and 
the wave function will be 

( )y ASin t kxω= −  

Where A  is the amplitude of the wave and its phase at a point x  at the instant of time t  is 
s t kxω= − . If the phase remains constant with time, we must have 
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Therefore, the phase velocity of the wave is the velocity with which the constant phase surface 
moves (wavefront) moves in space. 
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Wave group: 

A simple harmonic wave train as represented by the equation ( )y ASin t kxω= −  is an idealised 

concept because it sets no limit on x  and requires an infinitely long train of waves. No source of 
waves vibrates indefinitely. The vibrations die out due to interruption or loss of energy. In such a 
case, a train of waves of finite length is produced, which is called a wave train. When wave trains of 
different but close together frequencies, moving in the same direction, are superposed, the 
resultant pattern will be called a wave group. 

A short enough wave train may be treated as a wave group, as it may be considered to be formed by 
the superposition of a theoretically infinite number of plane harmonic waves whose frequencies 
differ continuously. The frequencies are confined within a range depending on the length of the 
wave train. The shorter the length, the wider will be the effective frequency range. 

The properties of a wave group differ greatly from those of a simple harmonic (hence 
monochromatic) wave train. When a wave group is made to pass through a wavelength analyser, it 
is found that the wave trains in the group do not have the same wavelength; instead there will be a 



finite, however, small spread up wavelength λ∆  about a mean wavelength 0λ  that corresponds to 

maximum energy (see figure). Other wavelengths in the range also carry energy, but the energy falls 
off as the wavelength differs more and more from 0λ . The relationship between the spreading 

wavelength with λ  and the number of individual waves (N) is 
N
λλ∆ = . This implies that for higher 

the number of wavelength comprising the wave group the spread will be lesser about 0λ . When N is 

very large, i.e. N →∞ , we get a well defined λ which corresponds to a simple harmonic wave train 
(monochromatic). 

Mathematical representation of a wave group is rather complex. It may be looked upon as being 
synthesized by adding up an infinite number of wave trains whose frequencies differ by infinitesimal 
amounts.  Besides, their amplitudes must be such as to produce the wave form of the wave 
concerned. 

Group velocity: 

Let us consider a wave group formed by the superposition of an infinite number of plane simple 
harmonic waves. If the medium through which the wave group travels be dispersive, i.e. the wave 
velocity depends on frequency, the maximum of the wave group travels with a velocity different 
from that of the component waves. This is called the group velocity. Energy travels with the group 
and has the velocity of the group. 

Relation between the group velocity and the phase velocity: 

Let us consider a simple case in which the group is formed by the superposition of two waves of 
equal amplitude but of slightly different frequency and wavelength moving in the same directions. 
The component waves are given by 
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The resultant wave is given by 
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From the sine term, we can see that the resultant wave has an angular frequency 
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wave length constant 
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k dk+ , both of which are the mean values for the component waves. Its 



phase velocity  is 
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 , where ω  and k  are the mean frequency and mean 

wave constant respectively. This is practically equal to 
k
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, i.e., the phase velocity of the either 

component wave. Since ω  and k  are very large compared to dω  and dk , the cosine term varies 
very slowly compared to the sine term and it may be taken as the amplitude of the resultant wave.  

The group velocity of the wave is determined by the speed with which the crest and trough of the 
wave group (i.e. of the envelope) travels in space.  
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Since ckω = , we have 
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Therefore, the group velocity, i.e., the velocity with which the maximum of the group moves, is given 
by 
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In the dispersive medium, phase velocity c  changes with the wavelengthλ . In a non-dispersive 

medium, phase velocity c is the same for all wavelengths, i.e. 0dc
dλ

= . Therefore, in a non-

dispersive medium, we have grv c= , i.e. group velocity and phase velocity are equal. 

 


