Chemoheterotrph

These organism can derive energy from chemical compound.

Metabolism

 Metabolism, the sum of the chemical reactions that take place within each cell of a living organism and that provide energy for vital processes and for synthesizing new organic material.

Classification of Metabolism

^{© 2012} John Wiley & Sons, Inc. All rights reserved.

• What is the relation between respiration and metabolism ?

Condition for mtabolism

- Availability of the substrate
- Presence of enzyme
- Presence of cofactor, energy currency
- Negative Δ G

Regulation of Metabolic reaction

- Inhibition of enzyme activity
- Inhibition of transcription of enzyme production

Respiration

The biochemical process in which the cells of an organism obtain energy from oxidation of glucose, resulting in the release of carbon di oxide, water and energy.

Phases of respiration

- External respiration
- Internal respiration

Internal respiration	External Respiration
Biochemical procedure	Mechanical process i.e exchange of CO2 and O2 gasses
Occurs in living cell	Occurs outside the cell
Requires Enzyme	Does not require enzyme
Steps are Glycolysis, TCA cycle	Steps are exhalation and inhalation
In this process living cell participates	Respiratory organs participate in this process

Types of Internal respiration

- Aerobic respiration:
- Anaerobic respiration
- Fermentation

Aerobic	Anaerobic
Occurs in presence of O2	Occurs in absence of O2
Complete oxidation of food occurs	Partial oxidation of food occurs
More ATP are produced in this system	Less ATP are produced
Occurs in mostly plant and animal	Occurs mostly in microorganism, parasite and sometimes in higher animal due to lack of O2
Terminal electron carrier is O2	Terminal electron carrier is not O2

Aerobic respiration

- Steps:
- Glycolysis
- Pyruvate Oxidation
- TCA Cycle
- Electron transport chain

Anaerobic Respiration

- Steps:
- Glycolysis
- Electron transport chain with nitrate ion, sulphate ion and carbonate ion

Fermentation

- Steps:
- Glycolysis
- Production of ethyl alcohol, lactic acid, formic acid from pyruvate

Allosteric inhibition

Feedback inhibition

Overview of Feedback Inhibition

Feedback inhibition occurs when the biochemical product of a pathway blocks an enzyme in the beginning of the pathway. This occurs when there is a buildup of product/excess of product being produced. Cells use this method to slow down the production, conserve energy and to keep a state of balance (homeostasis) within the cell.

Feedback Inhibition: The final product inhibits enzyme one

Phosphoenolpyruvate:sugar phosphotransferase system

Hexokinase

Glycolysis or Embden-Meyerhof pathway 3 Phosphoglucose Hexokinase Phosphotructokinase isomerase CH2OPO CH20PO2 CH_OPO2 CH2OH CH2OPO2 CH2OH 4G** ΔG" $\Delta G^{**} = -3.4$ = +0.4HO OH OH OH OH OH Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6-bisphosphate Aldolase $\Delta G^{**} = +5.7$ 0 ∆G" = +1.5 6 Glyceraldehyde phos-phate dehydrogenase 4C=0 CH_OPO Phosphoglycerate Triose phosphate -0" -0 Phosphoglyceromutase kinase isomerase 5HCOH HCOPO HCOH HCOH C=0∆G" = +1.8 $\Delta G^{*'} = +1.1$ CH20PO3 CH,OPO CH_OPO NAD* CH2OH ADP CH_OH ATP NADH AG" = -4.5 2-Phospho-3-Phospho-Glyceraldehyde Dihydroxyacetone 1,3-Bisphosphoglycerate glycerate 3-phosphate glycerate phosphate Carrier of 2 electrons 0 Enolase Pyruvate kinase AG** = +0.4 C-0 H_04 $AG^{**} = -7.5$ C=0CH CHa ADP ATI Phosphoenolpyruvate Pyruvate

Regulation of hexokinase enzyme

 Hexokinase enzyme is inhibited by its product Glucose -6 Phosphate

Regulation of PFK1

Regulation of PFK1

- PFK1 enzyme is activated by Fructose 2,6 bis phosphate

Regulation of PFK1

- Inhibited at high concentration of H⁺
- Inhibited at high concentration of citrate ion

Regulation of Pyruvate kinase

Account the number of ATP gained in glycolysis

• No of ATP gained :2

Related Questions

- Compare Gluco kinase and hexokinase
- Explain the effect of ATP, Fructose 2,6 bis P, H⁺ on phosphofructokinase I (PFKI).
- Name NAD⁺/NADH requiring enzyme, Mg⁺² requiring enzyme, Zn⁺² requiring enzyme.
- What do you mean by positive regulator and negative regulator of an enzyme?

TCA cycle

 In TCA cycle a series of enzymatic reactions takes place and these steps replenish the pools of intermediates or metabolites.

Forme	Abbreviation	Number of chains	group	Reaction catalyzed
component Dihydrolipoyl transacetylase	E_2	24	Lipoamide	Transfer of the acetyl group to CoA
Dihydrolipoyl dehydrogenase	E ₃	12	FAD	Regeneration of the oxidized form of lipoamide

Tri carboylic Acid Cycle (TCA Cycle)

Glyoxylate cycle

 an anabolic pathway occurring in plants, bacteria, protists, and fungi

Glyoxylate Cycle

Coordinated Regulation of Glyoxylate Cycle and TCA Cycle

figure 16-19

Regulation of isocitrate dehydrogenase activity that determines partitioning of isocitrate between the glyoxylate and citric acid cycles. When isocitrate dehydrogenase is inactivated by phosphorylation (by a specific protein kinase), isocitrate is directed into biosynthetic reactions via the glyoxylate cycle. When the enzyme is activated by dephosphorylation (by a specific phosphatase), isocitrate enters the citric acid cycle and ATP is produced.

Pentose Phosphate pathway

- Location: Cell cytosol
- Importance:
- It is important to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing moecule for steroid biosynthesis, to reduce toxicity or to defeat oxidative stress.

Oxidative phase reaction

FIGURE 20.20 Oxidative phase of the pentose phosphate pathway. Glucose 6-pł phate is oxidized to 6-phosphoglucono-δ-lactone to generate one molecule of NADPH. lactone product is hydrolyzed to 6-phosphogluconate, which is oxidatively decarboxylat ribulose 5-phosphate with the generation of a second molecule of NADPH.

Non oxidative phase reaction

The donan of the tree contain unit in this reaction is virbulage 5-nhosnha

Non oxidative phase reaction

Non oxidative phase reaction

Feeder pathway in glycolysis

Fructose metabolism in microorganism

Fructose <u>PEP</u> Fructose 6P

Metabolism of lactose

Metabolism of fructose in mammalian system

- In muscle:
- Fructose
 Fructose 6P
- In liver:
- Fructose
 Fructose 1P
- Fructose 1P
 Glyceraldehyde+

Dihydroxy acetone P

Glyceraldehyde -----> Glyceraldehyde 3P

Glycogenolysis / glycogen metabolism

Glycogon phasel

Galactose metabolism

Entner dowdoroff pathway

Appendix II Common Metabolic Pathy

Modified entner doudoroff Pathway

Alcohol fermentation

 GlucosePyruvate Alcohol Acetaldehyde >

Mixed Acid Fermentation (Escherichia, Salmonella)

aceae such as E. coli.

Butanediol fermentation (Enterobacter, Serratia)

Homo lactic Fermentation

Hetero Lactic Fermentation((Enterobacteriaceae)

Heterolactic fermentation

Stickland reaction(Genus: Clostridium)

