
Damped Vibrations 

Free Vibration: 

After vibrations have been excited and the exciting force is removed, the system continues to vibrate 
with a frequency characteristics of its own. Such vibrations are called free vibrations. The periodic 
time of vibration is called the free or natural period. Its reciprocal is called the natural frequency. 

However, in all practical cases it is found that when left to itself the vibration of the system gradually 
diminishes in amplitude and finally dies away. This is because the motion is resisted by various 
frictional effects, internal as well as external. A vibrating pendulum is damped because resisting 
forces between its suspension and support and between air and the bob. Vibrations thus hampered 
from within and without and of gradually diminishing amplitude are called resisted or damped 
vibrations. 

 

The above figure represents a case of damped simple harmonic motion. At each vibration some 
energy is lost in overcoming the resisting forces. If the resisting force is large rate of loss of energy is 
also large. In this case the system quickly comes to rest. With small damping, vibrations continue for 
a long time, the amplitude diminishes slowly. 

Damped vibrations: 

Free vibratory motions are opposed by various frictional and viscous forces and finally bring the 
body to rest. In the simplest case, this resisting or retarding force may be taken to be proportional to 
the instantaneous velocity of the moving body. 

Suppose a particle of mass ‘m’ is moving along X-axis and subjected to a restoring for proportional to 
distance from fixed point on the axis and a frictional force proportional to the velocity. Then the 
equation of motion of such a particle can be written as  
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Where ‘s’ is the stiffness (or spring) constant and ‘K’ is the resistance coefficient which denotes 
frictional force per unit velocity. 
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  and  2K b
m
 , we have 
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Let tx(t) e  be the solution of eq. (1). 
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The general solution of eq. (1) can be written as 

2 2 2 2 2 2 2 2( b ) t ( b ) t bt t t
1 2 1 2( ) ( )b b b bx t Ae A e e Ae A e                 

where A1 and A2 are two arbitrary constants whose values can be determined from the initial 
conditions.  

Case-I  Overdamped motion:  b>ω (large damping) 

Now b>ω 

 b2> ω2 

 b2> (b2 - ω2) 


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time and the motion finally ceases. This motion is called aperiodic or over-damped or dead-beat. It is 
non-oscillatory and heavily damped. 

 



Particular case: 

Let the system have a displacement ‘a’ and velocity ‘v0’ initially. 

x = a and v = v0 at t = 0. 

We have 1 1t b tbt
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At t = 0, x = a and v = 
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Solving for A1 and A2 we get 
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If the particle is displaced to ‘a’ and then released so that 
dx
dt

= v0 = 0 at t = 0. 


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Case-II Under-damped Oscillation: b<ω (small damping) 

Now b<ω 

b2<ω2 
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
2 2 2 2bt t t

1 2( )i b i bx e Ae A e       

 bt 2 2 2 2
1 2 1 2x [( )Cos t ( )Sin t]e A A b i A A b        

Now A1 and A2 may both contain real as well as imaginary parts. Let a1 and a2 be the real parts of 

coefficient s of 2 2Cos tb   and 2 2Sin tb  respectively. 
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This is the equation of damped oscillatory motion. Constants a1 and a2 can be found from the initial 
conditions. 

If we put 1a = RCos  and 2a = R Sin , we can write 
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Particular case: 

Let the initial displacement and velocity be ‘a’ and ‘v0’ respectively. 

Now bt
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Now at t = 0, x = a and v = v0 
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Now, 
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If the body be displaced to ‘a’ and then released. Then at t = 0, x = a and 0dxv
dt

  . 
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Thus the displacement x as given in the above equations express damped harmonic motion, the 

amplitude decreasing exponentially with time. The time period 
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
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is slightly greater 

than the time period for free or natural vibration which is
2T 


 . 

Now, 2 s
m

  and 
2

2
24

Kb
m

 . 2b is a term of smallness of second order in comparison to 2 and 

can in most cases be neglected. Thus the time period of oscillation is very slightly affected by 
damping of ordinary magnitude. 



 

Let x0, x1, x2, x3,.........etc. be the maximum displacements of the system in both directions at time 

given by ω1t-θ = 2 2w b t   = 0, π, 2π, 3π,..... etc. respectively. 
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Thus neglecting the sign of displacements, 
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Thus the damping coefficient can be found out from an experimental measurement of consecutive 
amplitudes. 

Case-III Critically damped motion: b → ω 

We have, 

2 2 2 2( b ) t ( b ) t bt t t
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quantity. 
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where 1 2A A A   and 1 2( )A A B  . 

The above equation of x is that of critically damped motion. 

Particular case: 

Suppose the particle has displacement x = a and velocity v = v0 at t = 0.Then we have, 
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[Expanding and neglecting higher order terms as b → ω] 
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where A a  and 0v ba B  . 

 bt ( )x e A Bt   

The motion represented by this equation is also aperiodic, but x reaches the final value more quickly 
than when b > ω. This case is known in mechanics as critically damped motion. 

 

When the particle under critical damping is given an initial velocity 0v while x = 0 i.e. x = 0, 0v v  at 

t = 0. 

A = 0 and 0vB   

 bt
0vx te  

 bt bt bt
0 0 0v v v (1 )dx e te b e bt

dt
       

Thus the body comes to rest for the first time when v 0dx
dt

  . 

 
1t
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This time is independent of the initial velocity. The maximum displacement it undergoes is 

0
max

vx
eb

 . 

 

 



Time constant or modulus of decay: 

This is the time in which the amplitude decreases to 
1
e

of its initial value. We have, 

bt( )a t ae  

Let in time  amplitude falls 
1
e

times its initial value which is ‘a’. 

 (0)a a  and b( )a ae   . 

According to the definition of time constant, 
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(0)
a
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
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
b 1ae
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Or, b 1e e   

Or, b 1   


1 2m
b K

    [∵ 2K b
m
 ] 

The heavier the mass or smaller the damping, the larger is the time constant ().  gives the measure 
of how quickly the motion is damped by the resisting force. 

Energy in forced vibrations: 

Let x be the displacement of the particle at any instant t. The restoring force on the particle is sx (s is 
the spring/stiffness constant). The potential energy of the particle at any instant t is 

21
2

PE sx  

The kinetic energy at the same instant t is 

21 ( )
2

dxKE m
dt

  

If the particle further describes an element of displacement dx, the loss of total energy (KE+PE) of 
the particle will be equal to the work done against the frictional force. 



The frictional force on the particle is 
dxK
dt

. Hence the work done against the frictional force is 

dxK dx
dt

. 

 2 21 1{ ( ) }
2 2

dx dxd sx m K dx
dt dt

    

The rate loss of energy i.e. loss of energy per unit time is 

2 21 1{ ( ) }
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d dx dx dxsx m K
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    

Or, 
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2
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    


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2m 0d x dxK sx
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  for all values of t] 

This is the required equation of damped motion. 

Average kinetic energy and potential energy: 

For small damping (underdamped motion) the displacement of the particle at any instant is given by 

bt 2 2 bt
0Cos( t ) Cos( t )x ae b ae         , 

where a is the initial displacement of the particle,   is the initial phase, 0 the frequency of 

natural/free vibration and 2 2
0 b   is the frequency of damped vibration. 

The kinetic energy of the particle is given by 
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2 2

1 [bCos( t ) Sin( t )]
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     

 

The potential energy of the particle is 
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Hence the total energy is given by 
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Hence the total energy of the particle in damped vibration is not constant, it changes with time. 

Average kinetic energy is 
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[ 2bte is taken to be constant since the amplitude of oscillation btae  having term 2bte  does not 
change in the cycle of motion ] 
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The average potential energy is 
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Hence the average kinetic energy and average potential energy over a complete cycle is equal. 

The average total energy is given by 
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The average loss of energy against the resisting force over a complete cycle is 
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The quality factor Q  is given by 
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We can see that for small damping is (low K) i.e. weak damping the quality factor is high. 


