Quantum Chemistry

Postulates of Quantum Mechanics:

1. The properties of a quantum mechanical system are determined by a wave function $\Psi(\mathrm{x}, \mathrm{t})$ that depends upon the spatial coordinates of the system and time, x and t.
2. The wave function is interpreted as probability amplitude with the square of the wave function $\Psi^{*}(x, t) \Psi(x, t)$ interpreted at the probability density at time t. Because of the probabilistic interpretation, the wave function must be normalized.

$$
\int \Psi^{*}(x, t) \Psi(x, t) d \tau=1
$$

where $d \tau=d x . d y . d z=$ small volume element
3. The time - independent wavefunctions of a time - independent Hamiltonian are found by solving the time - independent Schrodinger equation.

4. If a system is described by the eigen function ψ of an operator A then the value measured for the observable property corresponding to A will always be the eigen value a, which can be calculated from the eigenvalue equation.

$$
A \psi=a \psi
$$

5. The average value of the observable corresponding to operator \hat{A} is given by

$$
\langle A\rangle=\frac{\int_{-\infty}^{\infty} \Psi^{*} \hat{A} \Psi d \tau}{\int_{-\infty}^{\infty} \Psi^{*} \Psi d \tau}
$$

Wave - Particle Duality:

Wave-particle duality refers to the fundamental property of matter where, at one moment it appears like a wave, and yet at another moment it acts like a particle. de - Broglie proposed that just as light shows both wave \& particle aspects matter also has a dual nature, wave as well as showing particle like behavior.
From photoelectric effect, energy of photon, $E=h \gamma$
According to Einstein's theory, $E=m c^{2}$

Comparing two equations,

$$
\begin{aligned}
h \gamma & =m c^{2} \\
O r, \frac{h c}{\lambda} & =(m c) \cdot c \\
O r, \lambda & =\frac{h}{m c}=\frac{h}{P}
\end{aligned}
$$

$$
\text { where }, P=m c=\text { momentum }
$$

So, for a moving particle with mass $(m) \&$ velocity (v), we can write,

$$
\lambda=\frac{h}{m v}=\frac{h}{P}
$$

From the de-Broglie equation prove that $\lambda=h / \sqrt{2 m e V}$ where V is potential difference.

Let us consider an electron of charge e is accelerated by a potential difference V . Then its K.E. will be eV . Now if velocity of electron is v \& mass is m, then -

$$
E=\frac{1}{2} m v^{2}=e V, O r, v=\left(\frac{2 e V}{m}\right)^{\frac{1}{2}}
$$

According to de-Broglie equation,

$$
\lambda=\frac{h}{m v}=\frac{h}{m}\left(\frac{m}{2 e V}\right)^{\frac{1}{2}}=\frac{h}{\sqrt{2 m e V}}(\text { proved })
$$

Normalization \& probability of Wave Function:

Normalization and Probability

- The probability $P(x) d x$ of a particle being between x and $X+d x$ was given in the equation

$$
P(x) d x=\Psi^{*}(x, t) \Psi(x, t) d x
$$

- The probability of the particle being between x_{1} and x_{2} is given by

$$
P=\int_{x_{1}}^{x_{2}} \Psi * \Psi d x
$$

- The wave function must also be normalized so that the probability of the particle being somewhere on the x axis is 1 .

$$
\int_{-\infty}^{\infty} \Psi *(x, t) \Psi(x, t) d x=1
$$

Necessity of Normalization: The normalization of a wave function necessary otherwise a wave function can't be considered as an acceptable wave function.
Significance: From the normalization of wave function, we can find the probability of finding the particle within the given range.
Normalize the function $\operatorname{Sin} x$ in the intervals $(0, \pi)$
$\int_{0}^{\pi} N^{2} \operatorname{Sin}^{2} x d x=1$
Or, $\frac{N^{2}}{2} \int_{0}^{\pi} 2 \operatorname{Sin}^{2} x d x=1$
Or, $\frac{N^{2}}{2} \int_{0}^{\pi}(1-\operatorname{Cos} 2 x) d x=1$
Or, $\frac{N^{2}}{2}\left[|x|_{0}^{\pi}-\frac{1}{2}|\operatorname{Sin} 2 x|_{0}^{\pi}\right]=1$
Or, $\frac{N^{2}}{2}\left(\pi-\frac{1}{2} \operatorname{Sin} 2 \pi\right)=1$
Or, $\frac{N^{2}}{2}(\pi-0)=1(\operatorname{since} \operatorname{Sin} 2 \pi=0)$
Or, $N= \pm \sqrt{\frac{2}{\pi}}($ Ans. $)$
Normalize the function $\operatorname{Cos} \frac{n \pi x}{a}$ in the intervals $(-a \leq x \leq+a)$
$\int_{-a}^{+a} N^{2} \operatorname{Cos}^{2} \frac{n \pi x}{a} d x=1$
Or, $\frac{N^{2}}{2} \int_{-a}^{+a}\left(1+\operatorname{Cos} \frac{2 n \pi x}{a}\right) d x=1$
Or, $\frac{N^{2}}{2}\left[|x|_{-a}^{+a}+\frac{a}{2 n \pi}\left|\operatorname{Sin} \frac{2 n \pi x}{a}\right|_{-a}^{+a}\right]=1$
Or, $\frac{N^{2}}{2}\left[\{a-(-a)\}+\frac{a}{2 n \pi}(\operatorname{Sin} 2 n \pi+\operatorname{Sin} 2 n \pi)\right]=1$
Or, $\frac{N^{2}}{2}\left[2 a+\frac{a}{2 n \pi}(0+0)\right]=1$
Or, $N= \pm \sqrt{\frac{1}{a}}$ (Ans.)
Normalize the function $\Psi(x)=N \operatorname{Sin} \frac{n \pi x}{a}$ in the intervals $(0 \leq x \leq a)$
$\int_{0}^{a} N^{2} \operatorname{Sin}^{2} \frac{n \pi x}{a} d x=1$
Or, $\frac{N^{2}}{2} \int_{0}^{a}\left(1-\operatorname{Cos} \frac{2 n \pi x}{a}\right) d x=1$
Or, $\frac{N^{2}}{2}\left[|x|_{0}^{a}-\frac{a}{2 n \pi}\left|\operatorname{Sin} \frac{2 n \pi x}{a}\right|_{0}^{a}\right]=1$

Or, $\frac{N^{2}}{2}\left[a-\frac{a}{2 n \pi} \operatorname{Sin} 2 n \pi\right]=1$
Or,$\frac{N^{2}}{2}[a-0]=1($ since Sin $2 n \pi=0$ where $n=0, \pm 1, \pm 2$ etc)
Or, $N= \pm \sqrt{\frac{2}{a}}$ (Ans.)
Normalize the function $\tan x$ in the intervals $\left(0 \leq x \leq \frac{\pi}{4}\right)$
$\int_{0}^{\frac{\pi}{4}} N^{2} \tan ^{2} x d x=1$
Or, $N^{2} \int_{0}^{\frac{\pi}{4}}\left(\operatorname{Sec}^{2} x-1\right) d x=1 \quad\left(\right.$ since $\left.\operatorname{Sec}^{2} \theta=1+\tan ^{2} \theta\right)$
Or, $N^{2}\left[|\tan x|_{0}^{\frac{\pi}{4}}-|x|_{0}^{\frac{\pi}{4}}\right]=1$
Or, $N^{2}\left[(1-0)-\left(\frac{\pi}{4}-0\right)\right]=1$
Or, $N^{2}\left(1-\frac{\pi}{4}\right)=1$
Or, $N= \pm \frac{2}{\sqrt{4-\pi}}$ (Ans.)
Normalize the function $e^{i m \phi}$ (m is an integer) defined in the intervals ($0 \leq \phi \leq$ 2π)
$\int_{0}^{2 \pi}(N \Psi) .\left(N \Psi^{*}\right) d x=1$
Or, $N^{2} \int_{0}^{2 \pi} e^{i m \phi} . e^{-i m \phi} d \phi=1$
Or,$N^{2}|\phi|_{0}^{2 \pi}=1$
Or, $N= \pm \sqrt{\frac{1}{2 \pi}}$
Normalize the function $\sqrt{a^{2}-x^{2}}$ in the interval $(0 \leq x \leq a)$
$N^{2} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=1$
Or, $N^{2}\left[a^{2}|x|_{0}^{a}-\left|\frac{x^{3}}{3}\right|_{0}^{a}\right]=1$
Or, $N^{2}\left(a^{3}-\frac{a^{3}}{3}\right)=1$
Or, $N^{2} \cdot a^{3} \cdot \frac{2}{3}=1$
Or, $N= \pm \sqrt{\frac{3}{2 a^{3}}}$

Operator:

An operator is a rule for transforming of given function into another function. For example:
$d / d x$ is an operator which convert function $\sin x$ into $\cos x$,

$$
\frac{d}{d x}(\sin x)=\cos x
$$

Properties of operator:

i. The sum of two operators is given by,

$$
(\hat{A}+\hat{B}) f(x)=\hat{A} f(x)+\hat{B} f(x)
$$

ii. The product of two operators is given by,

$$
\hat{A} \hat{B} f(x)=\hat{A}[\hat{B} f(x)]
$$

But $\hat{A} \hat{B} f(x)$ will be either equal to $\hat{B} \hat{A} f(x)$ or not. When $\hat{A} \hat{B} f(x)=\hat{B} \hat{A} f(x)$ then two operators are called commute to each other. When two operators are commute to each other then the corresponding commutator is given by as follows,

$$
[\hat{A}, \hat{B}]=0
$$

iii. The square of an operator is given by,

$$
\hat{A}^{2} f(x)=\hat{A}[\hat{A} f(x)]
$$

iv. An operator \hat{A} is called linear operator if

$$
\begin{gathered}
\hat{A} C f(x)=C \hat{A} f(x) \\
\text { For example, } \quad \frac{d}{d x}(2 \sin x)=2 \cdot \frac{d}{d x}(\sin x)=2 \cos x \\
\text { So, } \frac{d}{d x} \text { is a linear operator. }
\end{gathered}
$$

Classify the following operators as linear or non linear-

$$
\frac{d^{2}}{d x^{2}},()^{2}, \int() d x, \exp .,()^{\frac{1}{2}},()^{*}, \frac{d}{d x}
$$

(i) $\frac{d^{2}}{d x^{2}}[c f(x)]=c \frac{d^{2}}{d x^{2}}[f(x)]=c f^{\prime \prime}(x)$, so it is linear operator.
(ii) $[c f(x)]^{2} \neq c[f(x)]^{2}$, so ($)^{2}$ or SQR is non - linear operator.
(iii) $\int[c f(x)] d x=c \int f(x) d x$, so it is linear operator.
(iv) $\exp [c f(x)] \neq c \exp [f(x)]$, so it is non - linear operator.
(v) $[c f(x)]^{\frac{1}{2}} \neq c[f(x)]^{2}$, so SQRT is non - linear operator.
(vi) $[c f(x)]^{*} \neq c[f(x)]^{*}$, so it is non - linear operator.
(vii) $\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$, so it is linear operator.

Evaluate the result of the operator

(i) $\frac{d}{d x}+x \&$
(ii) $\frac{d}{d x}-x$, operating on the function $\left(x^{2}+2 x+1\right)$
(i) $\left(\frac{d}{d x}+x\right)\left(x^{2}+2 x+1\right)$
$=\frac{d}{d x}\left(x^{2}+2 x+1\right)+x\left(x^{2}+2 x+1\right)$
$=(2 x+2)+x^{3}+2 x^{2}+x=x^{3}+2 x^{2}+3 x+2$
(ii) $\left(\frac{d}{d x}-x\right)\left(x^{2}+2 x+1\right)$
$=\frac{d}{d x}\left(x^{2}+2 x+1\right)-x\left(x^{2}+2 x+1\right)$
$=(2 x+2)-x^{3}-2 x^{2}-x=-\left(x^{3}+2 x^{2}-x-2\right)$

Evaluate the result of the operator-

(i) $x^{2} \frac{d^{2}}{d x^{2}} \&(i i) \frac{d^{2}}{d x^{2}} x^{2}$, operating on the function $\left(x^{2}+2 x+1\right)$
(i) $\left(x^{2} \frac{d^{2}}{d x^{2}}\right)\left(x^{2}+2 x+1\right)$
$=x^{2} \frac{d}{d x}(2 x+2)=x^{2} .2=2 x^{2}$
(ii) $\left(\frac{d^{2}}{d x^{2}} x^{2}\right)\left(x^{2}+2 x+1\right)$
$=\left(\frac{d^{2}}{d x^{2}}\right)\left(x^{4}+2 x^{3}+x^{2}\right)$
$=\frac{d}{d x}\left(4 x^{3}+6 x^{2}+2 x\right)$
$=\left(12 x^{2}+12 x+2\right)=2\left(6 x^{2}+6 x+1\right)$
Given $A=\frac{d}{d x}$ \& $B=x^{2}$, show (i) $A^{2} f(x) \neq[A f(x)]^{2} \&(i i) A B f(x) \neq B A f(x)$
This can be proved as follows -
(i) $A^{2} f(x)=\frac{d}{d x} \frac{d f}{d x}=\frac{d^{2} f}{d x^{2}}$
$[A f(x)]^{2}=\left(\frac{d f}{d x}\right)^{2} \neq \frac{d^{2} f}{d x^{2}}$
(ii) $A B f(x)=\frac{d}{d x}\left[x^{2} f(x)\right]=2 x f(x)+x^{2} \frac{d f}{d x}$
$B A f(x)=x^{2} \frac{d f}{d x} \neq A B f(x)$

