Planck' Law
 (Derivation without assuming Bose-Einstein Statistics)

Consider a closed chamber with reflecting walls within which some Electro-magnetic radiation is confined. The electric and the magnetic field will satisfy the wave equation :

$$
\nabla^{2} \mathbf{E}=\left(1 / \mathrm{c}^{2}\right) \partial^{2} \mathbf{E} / \partial \mathrm{t}^{2}, \quad \nabla^{2} \mathbf{H}=\left(1 / \mathrm{c}^{2}\right) \partial^{2} \mathbf{H} / \partial \mathrm{t}^{2}
$$

The equations can be solved by the 'separation of variable' technique. Any component of ' \mathbf{E} ', or ' \mathbf{H} ', say E_{x}, assumes the form :
$E_{x}(x, y, z, t)=X(x) Y(y) Z(z) T(t)$, where $X^{\prime \prime} / X+Y^{\prime \prime} / Y+Z^{\prime \prime} / Z=\left(1 / c^{2}\right) T^{\prime \prime} / T$
After separation: $\mathrm{X}^{\prime \prime} / \mathrm{X}=-\mathrm{k}_{1}{ }^{2}, \mathrm{Y}^{\prime \prime} / \mathrm{Y}=-\mathrm{k}_{2}{ }^{2}, \quad \mathrm{Z}^{\prime \prime} / \mathrm{Z}-\mathrm{k}_{3}{ }^{2}$

$$
\begin{aligned}
& \text { and }\left(1 / \mathrm{c}^{2}\right) \mathrm{T}^{\prime \prime} / \mathrm{T}=-\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}+\mathrm{k}_{3}^{2}\right) \\
& \Rightarrow \mathrm{T}^{\prime \prime} / \mathrm{T}=-\mathrm{c}^{2}\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}+\mathrm{k}_{3}^{2}\right)=-\mathrm{c}^{2} \mathbf{k}^{2}=-\omega^{2}
\end{aligned}
$$

With boundary conditions of the form : $\mathrm{E}_{\mathrm{x}}=0$ for $\mathrm{x}=0$ and $\ell_{1}, \mathrm{y}=0$ and $\ell_{2}, \mathrm{z}=0$ and ℓ_{3}, where $\ell_{1}, \ell_{2}, \ell_{3}$ are the dimensions of the chamber, the solutions for E_{x} will be of the form :

$$
\mathrm{E}_{\mathrm{x}}=\mathrm{A}_{\mathrm{mnp}} \sin \left(\mathrm{~m} \pi \mathrm{x} / l_{1}\right) \sin \left(\mathrm{n} \pi \mathrm{y} / l_{2}\right) \sin \left(\mathrm{p} \pi \mathrm{z} / \ell_{3}\right),
$$

where $\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}+\mathrm{k}_{3}^{2}=\mathrm{m}^{2} \pi^{2} / \ell_{1}^{2}+\mathrm{n}^{2} \pi^{2} / \ell_{2}^{2}+\mathrm{p}^{2} \pi^{2} / \ell_{3}^{2}=\omega^{2} / \mathrm{c}^{2}$
Each set of values ($\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$) represent a 'mode' of vibration. Plotted in a 3-dimensional graph, they form a lattice, while the eqn. : $\omega=$ const., describes a sphere of radius $\omega / \mathbf{c}_{\text {. }}$ Number of modes within the frequency range $\omega \rightarrow \omega+d \omega$ equals the no. of lattice points within two concentric spheres.
Each cube in the lattice has $\mathbf{8}$ lattice points at its corners, but each corner point, in turn, belongs to $\mathbf{8}$ neighbouring cubes.
\Rightarrow No. of lattice points /cube $=\mathbf{1}$.
\Rightarrow No. of lattice points within the frequency range $\omega \rightarrow \omega+\mathrm{d} \omega$
 $=$ vol. of the spherical shell / vol. of a cube.
$\Delta \mathrm{m}=\Delta \mathrm{n}=\Delta \mathrm{p}=1 \Rightarrow \Delta \mathrm{k}_{1}=\pi / \ell_{1}, \Delta \mathrm{k}_{2}=\pi / \ell_{2}, \Delta \mathrm{k}_{3}=\pi / l_{3}$
\Rightarrow vol. of a cube $=\pi^{3} / l_{1} \ell_{2} l_{3}$
and the vol. of the spherical shell $=4 \pi r^{2} \mathrm{dr}=4 \pi\left(\omega^{2} / \mathrm{c}^{2}\right) \mathrm{d} \omega / \mathrm{c}=4 \pi \omega^{2} \mathbf{d} \omega / \mathrm{c}^{3}$

$$
=4 \pi(2 \pi v)^{2} \mathrm{~d}(2 \pi v) / \mathrm{c}^{3}[\because \omega=2 \pi v]=32 \pi^{4} v^{2} \mathrm{~d} v / \mathrm{c}^{3}
$$

So, the no. of modes within $v \rightarrow v+\mathrm{d} v=\left(32 \pi^{4} v^{2} \mathrm{~d} v / \mathrm{c}^{3}\right) \div\left(\pi^{3} / l_{1} l_{2} l_{3}\right)=32 \pi v^{2} \mathrm{~d} v / \mathrm{c}^{3} \times l_{1} l_{2} l_{3}$
\Rightarrow the no. of such modes per unit vol. of the cavity $=32 \pi v^{2} d v / \mathbf{c}^{3}$.
One must note that +ve and -ve values of ($\mathrm{m}, \mathrm{n}, \mathrm{p}$) do not represent different modes, since the solution : $\mathrm{E}_{\mathrm{x}}=\mathrm{A}_{\mathrm{mnp}} \sin \left(\mathrm{m} \pi \mathrm{x} / \ell_{1}\right) \sin \left(\mathrm{n} \pi \mathrm{y} / \ell_{2}\right) \sin \left(\mathrm{p} \pi \mathrm{z} / \ell_{3}\right)$, only differs in sign, which can be absorbed in the const. $A_{\text {mnp }}$. Therefore, to obtain the no. of physically distinct modes, we must restrict ourselves to only one octant of the spherical shell
\Rightarrow the no. of modes $=4 \pi v^{2} \mathbf{d v} / \mathbf{c}^{3}$.
Similar solutions can be obtained for the other components of the electric field. However, for a wave travelling, say along z-direction, we shall have only the E_{x} and the E_{y} components, since

Electromagnetic wave is transverse. The two components basically take care of the two independent polarizations (\mathbf{E} along \mathbf{x}, consequently, \mathbf{H} along y and \mathbf{E} along y, consequently, \mathbf{H} along \mathbf{x}). Taking these two polarization states into account :
the total no. of modes / unit vol. of the cavity $=\mathbf{8} \pi v^{2} \mathbf{d} v / \mathbf{c}^{3}$.
Now each vibrational mode may be considered as an independent harmonic oscillator.
In the earlier note [Einstein Sp. Heat Problem], we calculated the average energy $\left\langle\mathrm{E}_{v}\right\rangle$ for each oscillator with freq. ' v ':
[The single-particle Partition Function :

$$
\begin{aligned}
\mathrm{z}=\Sigma \mathrm{e}^{-\beta E n} & =\mathrm{e}^{-\beta h v / 2}+\mathrm{e}^{-3 \beta h v / 2}+\mathrm{e}^{-5 \beta h v / 2}+\ldots \\
& =\mathrm{e}^{-\beta h v / 2}\left(1+\mathrm{e}^{-\beta h \nu}+\mathrm{e}^{-2 \beta h v}+\ldots\right)^{\prime}
\end{aligned}
$$

This is an infinite GP series, with the first term $=\mathrm{e}^{-\beta h v / 2}$ and the common ratio $=\mathrm{e}^{-\beta h \nu}$.
The sum of the series : $a+a \mathrm{r}+a \mathrm{r}^{2}+\ldots=a /(1-\mathrm{r})$

$$
\begin{aligned}
& \Rightarrow \mathrm{z}=\mathrm{e}^{-\beta h v / 2} /\left(1-\mathrm{e}^{-\beta h \nu}\right)----(1) \\
& \Rightarrow \ln \mathrm{z}=-\beta \mathrm{h} v / 2-\ln \left(1-\mathrm{e}^{-\beta h \nu}\right)
\end{aligned}
$$

\Rightarrow Avg. energy per oscillator: $\left\langle\mathrm{E}_{v}\right\rangle=-\partial \ln \mathrm{z} / \partial \beta=\mathrm{h} \nu / 2+1 /\left(1-\mathrm{e}^{-\beta h \nu}\right) \times \mathrm{e}^{-\beta h v} \times \mathrm{h} \nu$

$$
\Rightarrow\left\langle\mathrm{E}_{v}\right\rangle=-\partial \ln \mathrm{z} / \partial \beta=\mathrm{h} v / 2+\mathrm{h} v \mathrm{e}^{-\beta h v} /\left(1-\mathrm{e}^{-\beta h v}\right)
$$

The first term is clearly the zero point energy.
Multiplying the numerator and the denominator of the second term by $\mathrm{e}^{+\beta h \nu}$:

$$
\left.\left\langle E_{v}\right\rangle=h v / 2+h v /\left(e^{\beta h v}-1\right)\right]
$$

Dropping the zero point energy term, the avg. energy/unit vol. of the cavity, within the freq. range $v \rightarrow v+d v$:

$$
u_{v} d v=8 \pi v^{2} d v / c^{3} \times h v /\left(e^{\beta h v}-1\right),
$$

which is nothing but Planck's law.

Derivation of Planck's Law from Bose-Einstein Statistics

Instead of considering Electro-magnetic waves, travelling back and forth between the walls of a black-body chamber, we may consider the system to be a collection of photons, moving randomly, like the molecules of an ideal gas. The state of a photon may be specified by its position, momentum and state of polarization.

Within a small region $d x d y d z d p_{x} d p_{y} d p_{z}$ in the 6-dimensional phase space, the number of states is given by :

$$
2 \times \mathrm{dx} \text { dy dz dp } \mathrm{dp} \mathrm{dp}_{\mathrm{y}} \mathrm{dp}_{\mathrm{z}} / \mathrm{h}^{3} .
$$

The factor ' 2 ' is due to the two states of polarization.
(As such, every point in the phase space classically represents a state of a particle. However, according to Uncertainty Principle, no two states within the hyper-cube (6-dimensional cube) of volume h^{3} can be distinguished.)
Integrating over all possible values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$:
the number of states in the ranges: p_{x} to $p_{x}+d p_{x}, p_{y}$ to $p_{y}+d p_{y}, d p_{z}$ to $p_{z}+d p_{z}=$ $\int_{x} \int_{y} \int_{z} d x d y d z d p_{x} d p y_{y} d p_{z} / h^{3}=2 V d p_{x} d p_{y} d p_{z} / h^{3}$,
where ' V ' is the volume of the box within which the radiation is confined.
Switching over to the polar co-ordinates in the momentum space :

$$
\mathrm{dp}_{\mathrm{x}} \mathrm{dp}_{\mathrm{y}} \mathrm{dp}_{\mathrm{z}}=\mathrm{p}^{2} \sin \theta \mathrm{dp} \mathrm{~d} \theta \mathrm{~d} \phi,
$$

where θ, ϕ specifies the direction of the momentum vector.
Integrating over all possible directions of the momentum vector (because the energy depends only on the magnitude of the \mathbf{p}-vector) :
the number of states in the momentum (magnitude) range p to $\mathrm{p}+\mathrm{dp}=$

$$
\mathrm{g}(\mathrm{p}) \mathrm{dp}=2 \mathrm{~V} / \mathrm{h}^{3} \int_{\theta} \int_{\phi} \mathrm{p}^{2} \sin \theta \mathrm{dp} \mathrm{~d} \theta \mathrm{~d} \phi=8 \pi \mathrm{p}^{2} \mathrm{dp} \times \mathrm{V} / \mathrm{h}^{3} .
$$

In terms of energy:
The energy of a relativistic particle in general, is given by the expression :
$\mathrm{E}=\sqrt{ }\left(\mathrm{c}^{2} \mathrm{p}^{2}+\mathrm{m}_{0}{ }^{2} \mathrm{c}^{4}\right)$, where ' m_{0} ' is the rest mass of the particle.
For a photon, $\mathbf{m}_{0}=\mathbf{0} \Rightarrow \mathbf{E}=\mathbf{c p} \Rightarrow \mathrm{dE}=\mathrm{c} d p$
So, the number of states in the energy range E to $\mathrm{E}+\mathrm{dE}=$

$$
\mathrm{g}(\mathrm{E}) \mathrm{dE}=8 \pi \mathrm{~V} / \mathrm{c}^{3} \mathrm{~h}^{3} \times \mathrm{E}^{2} \mathrm{dE} \times \sqrt{ }(2 \mathrm{mE})
$$

In terms of frequency:
In accordance with Quantum Postulate, the energy of a photon is given by :
$\mathbf{E}=\mathbf{h} v$. Hence, the number of states in the range of frequency v to $v+\mathrm{d} v=$

$$
\mathrm{g}(v) \mathrm{d} v=8 \pi \mathrm{~V} / \mathrm{c}^{3} \times v^{2} \mathrm{~d} v
$$

Note that the expression is independent of ' h ', which hints that it might have a classical derivation, which was indeed provided by Raleigh and Jeans.
According to Bose Einstein Statistics, the number of particles occupying a state with energy ' E ', is given by : $\mathbf{1} / \mathbf{e}^{\mathrm{E} / \mathrm{KT}}-\mathbf{1}$.
(Since the total number of photons need not be conserved, the chemical potential $\boldsymbol{\mu}=0$.) So, the number of photons occupying the states within the frequency range v to $v+\mathrm{d} v=$

$$
\mathrm{n}(v) \mathrm{d} v=8 \pi \mathrm{~V} / \mathrm{c}^{3} \times v^{2} \mathrm{~d} v /\left(\mathrm{e}^{\mathrm{hv} / \mathrm{KT}}-1\right)
$$

and the energy /unit volume within this range $=$
$\mathrm{E}(v) \mathrm{d} v=8 \pi / \mathrm{c}^{3} \times v^{2} \mathrm{~d} v /\left(\mathrm{e}^{\mathrm{h} v / \mathrm{KT}}-1\right) \times \mathrm{h} v=8 \pi \mathrm{~h} v^{2} \mathrm{~d} v / \mathrm{c}^{3}\left(\mathrm{e}^{\mathrm{h} v / \mathrm{KT}}-1\right)$,
which is nothing but Planck's law.

Total Energy Density :

Considering all possible frequencies, the total Energy Density

$$
u=\int 8 \pi v^{2} d v / c^{3} \times h v /\left(e^{\beta h v}-1\right) .
$$

Subst. : $\beta \mathrm{h} v=\mathrm{h} v / \mathrm{KT}=\mathrm{x} \Rightarrow(\mathrm{h} / \mathrm{KT}) \mathrm{d} v=\mathrm{dx}$
At $v=0, \mathrm{x}=0$ and as $v \rightarrow \infty, \mathrm{x} \rightarrow \infty$.

$$
\begin{aligned}
\Rightarrow \text { Now, } \mathrm{u} & \left.=\int 8 \pi \mathrm{~h} v^{3} \mathrm{~d} v / \mathrm{c}^{3} /\left(\mathrm{e}^{\beta h v}-1\right) \text { [for } v=0 \text { to } \infty\right] . \\
& =8 \pi \mathrm{~h} / \mathrm{c}^{3}(\mathrm{KT} / \mathrm{h})^{4} \int \mathrm{x}^{3} \mathrm{dx} /\left(\mathrm{e}^{\mathrm{x}}-1\right)[\text { for } \mathrm{x}=0 \text { to } \infty] .
\end{aligned}
$$

The x -integral produces a pure number, hence, $\mathbf{u} \propto \mathbf{T}^{4}$. This is basically the Stefan's Law.

