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We solve the Schroedinger equation (1) represented in the polar coordinate (*10:¢) setting the boundary condition that the wave
function should be smoothly continuous at every point of the coordinate space and should converge to 0 at the infinitely long distance
r =00, Then we have a set of discrete energy eigenvalues and the corresponding eigenstates. The details of the method to solve it is
omitted here. If you want to study them, please refer to some other textbooks of quantum mechanics.

The wave functions of the eigenstates is expressed as

(r,8,0) = Ru(r) Yin (6, ¢). (2)

Here the part £ui(r) is called the radial wave function which is specified by a set of integers, n and [ . Such numbers (integers) as these
n and [ are sometimes called quantum numbers, which characterize the eigenstates.
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In the present case, they are

=123 (=012 1<n-1, (3

The part Ym(8,9) denotes the angular wave function which is specified by a set of quantum numbers (integers), [ and m , and they are
eiven by

m[<l e m==l=l4le =1 ()

The angular wave function Yin(®:9) deseribes the revolving state of the electron around the coordinate origin (proton). Namely, the
quantum number [ expresses the speed of the revolution of the electron. 1.¢. the magnitude of the angular momentum of the electron, and
m represents the orientation (direction) of angular momentum vector. The fact that these quantum numbers [ and m are integers means
that both the magnitude and the orientation of the angular momentum are step-like and discrete,

This result implies that not only energy but also angular momentum and its orientation are quantized in quantum mechanics, This
was confirmed by the Stern-Gerlach experiment (1922). Needless to say. this also originates from the particle-wave duality of electrons.
And this can never understood by the classical theory.



|The Energy Eigenvalues of Hydrogen Atom)

The enetey igenvalues ofhydrogen atom are determnd only by the quanfum sumber i and they are expressed a

met 1
En--'m—zegﬁa (73-1,2,3,"'). (5)

The statewithn = 1 13 the Lowestenergy sate (the ground state) and those with.n =2, 3,.. avethe excited states Thus the ground-
tate enirgy 1§ Wt

fj == e = -13 . )



[The Probahility that Electron will he Found]

It 13 very inferesting to see how much the probablity for a electron to be found at a potnt in the space 15, The probability density
Rl

ata position of the distance 7 from the center 15 shown in Fig, (C). Integrating this probabulity density over the whole space, we have

/ AR =1

0

As shown in this infegration, the present wave functions are o notmalized that the total probability would be 1 (= 100 %)
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The above Fig. (C) shows the probability distribution of electron in hydrogen atom. The first figure shows the ground state. in which
almost all probability concentrated at

r ~ ap = the Bohr radius.
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Radial wavefunction of hydrogen atom forn =1, 2 and 3. The ordinate is always
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Radial detection probability in the hydrogen atom forn =1, 2, and 3. The ordinate is always
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If Y(0.0) = 0, angular nodes result. Angular nodes are g
planar or conical.
Number of angular nodes =/
Orbital ~ No. of angular nodes
s- orbital 0
p-orbital |
d-orbital 2 L’l‘otal pulgller nodz_ll gg_nr_@g_e =n -1

f-orbital 3

If R(r) = 0, radial nodes or spherical nodes result.
Number of radial nodes = n—[ —1
Orbital Radial Orbital Radial Orbital Radial

nodes nodes nodes
1s 0 2p 0 3d 0
2s | 3p 1 4d |

3s 2 4p 2 5d 2



1s 2s
(a) Electron probability (b) Contour probability

1s

25

3s

Electron probability (\Mr2r2)

Distance from nucleus (r)
(c) Radial probability



e Ay LA A A A A
SRR R AR R bR R e R R R R

Nodal \
plane z







The time-indepdent Schrédinger equation (in spherical coordinates) for a electron around a positively charged nucleus is then

B2 T8 (598 1 8 7B 19 e?
{—2”7 [E (7‘ E) -+ m% (Smoﬁ) + Sin20 3@2] — 41r€01‘}¢(r,0’¢) = E¢(T, 0, SO) (11.10.3)

Since the angular momentum operator does not involve the radial variable, r, we can separate variables in Equation 11.10.3 by using a product wavefunction.
We know that the eigenfunctions of the angular momentum operator are the Spherical Harmonic functions (Table M4), Y (8, ¢), so a good choice for a product
function is

¥(r,0,9) = R(r)Y (0, ¢) (11.10.4)

The Spherical Harmonic Y(8, ) functions provide information about where the electron is around the proton, and the radial function R(r) describes how far the
electron is away from the proton. A solution for both R(r) and Y (6, ¢) with Ey, that depends on only one quantum number n, although others are required for the
proper description of the wavefunction:

mee’

853]22112

E, = (11.10.5)

withn=1,2,3...00

The hydrogen atom wavefunctions, ¥(r,8, ¢), are called atomic orbitals. An atomic orbital is a function that describes one electron in an atom. The wavefunction
withn = 1,11 = 0 is called the 1s orbital, and an electron that is described by this function is said to be “in” the Is orbital, i.e. have a 1s orbital state. The
constraints on n, I 1), and m,; that are imposed during the solution of the hydrogen atom Schrédinger equation explain why there is a single 1s orbital, why there
are three 2p orbitals, five 3d orbitals, etc. We will see when we consider multi-electron atoms, these constraints explain the features of the Periodic Table. In other
words, the Periodic Table is a manifestation of the Schrédinger model and the physical constraints imposed to obtain the solutions to the Schrédinger equation for
the hydrogen atom.



The Three Quantum Numbers

Schrédinger’s approach requires three quantum numbers (n, I, and m;) to specify a wavefunction for the electron. The quantum numbers provide information
about the spatial distribution of an electron. Although n can be any positive integer (NOT zero), only certain values of I and m; are allowed for a given value of \

(n).

The principal quantum number (n): One of three quantum numbers that tells the average relative distance of an electron from the nucleus. indicates the
energy of the electron and the average distance of an electron from the nucleus

n=1,234,... (11.10.6)

Asn increases for a given atom, so does the average distance of an electron from the nucleus. A negatively charged electron that is, on average, closer to the
positively charged nucleus is attracted to the nucleus more strongly than an electron that is farther out in space. This means that electrons with higher values of n
are easier to remove from an atom. All wave functions that have the same value of n are said to constitute a principal shell. All the wave functions that have the
same value of n because those electrons have similar average distances from the nucleus. because those electrons have similar average distances from the nucleus.
As you will see, the principal quantum number n corresponds to the n used by Bohr to describe electron orbits and by Rydberg to describe atomic energy levels.

The Azimuthal Quantum Number: The second quantum number is often called the azimuthal quantum number (1). One of three quantum numbers that
describes the shape of the region of space occupied by an electron.. The value of | describes the shape of the region of space occupied by the electron. The allowed
values of | depend on the value of n and can range from0ton — 1:

1=0,1,.,2,3,..(n—1) (11.10.7)

For example, if n = 1, | can be only 0; if n = 2, | can be 0 or 1; and so forth. For a given atom, all wave functions that have the same values of both n and | form a
subshell. A group of wave functions that have the same values of n and |. The regions of space occupied by electrons in the same subshell usually have the same
shape, but they are oriented differently in space.



The Magnetic Quantum Number: The third quantum number is the magnetic quantum number (m;). One of three quantum numbers that describes the
orientation of the region of space occlupied by an electron with respect to an applied magnetic field.. The value of my describes the orientation of the region n
space occupied by an electron with respect to an applied maqnetic feld. The allowed values of m; depend on the value of I; my can range from I to [ in integral
steps.

m=-h -+l 0 -1 (11108)
For example, f = 0, ml can be only 0; if [ = 1, my canbe =1, 0, or +1; and if = 2, my can be -2, =1,0, 41, 0r 42

Each wave function with an allowed combination of n, I, and ml values describes an atomic orbital A wave function with an allowed combination of n, | and m
quantum numbers,, a particular spatial distribution for an electron, For a given set of quantum numbers, each principal shell has a fixed number of subshells, and
each subshell has a fived number of orbital.



Postulates of Bohr's Model of an Atom

« In an atom, electrons (negatively charged) revolve around the positively charged nucleus in a definite
circular path called orbits or shells.

« Each orbit or shell has a fixed energy and these circular orbits are known as orbital shells.

» The energy levels are represented by an integer (n=1, 2, 3...) known as the quantum number. This range of
quantum number starts from nucleus side with n=1 having the lowest energy level. The orbits n=1, 2, 3, 4.
are assigned as K, L, M, N.... shells and when an electron attains the lowest energy level, it is said to be in
the ground state.

« The electrons in an atom move from a lower energy level to a higher energy level by gaining the required
energy and an electron moves from a higher energy level to lower energy level by losing energy.

Increasing
enrgy
of orbits

A photon is emitted
with energy E = hf

\
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Bohr’s three postulates

Quantised orbits. The classical equations of motion are valid for
electrons in atoms. However. only certain discrete orbits with the
energy E_ are allowed. These are the energy levels of the atom.

The motion of the electron in these quantised orbits is radiationless. An
electron can be transferred from an orbit to another orbit. Emission:
transferning from an orbit with lower binding energy E, to an orbit with
higher binding energy E,: absorption: higher to lower binding energy
levels.

Corresponding principle. The orbital frequency is comparison with the
frequency of emission or absorption. For large n, one can calculate the
Rydberg constant Ry from atomic quantities.



Limitations of Bonr's Model of an Atorm

v Bofrs model of a atom faled o explainthe Zeeman Efect(ffectof magnefic ik on he spectra o
gtoms).

v [talsn faeato explain the Stark effect effect o lectric field on th spectra ofatoms).

v [vilates the Heisenberg Uncertainty Principe

o Itoould not explain the spectra obtained from arger atoms,



The Hund rule of maximum multiplicity states:

1. When two or more orbitals of equal energy (or very close energy) are
available, electrons will fill the orbitals singly before filling doubly.

2. All the electrons in the orbitals will have the same spin to maximize
the multiplicity.

In simple words, the rule says the lowest-energy electronic
configuration is attained with the maximum number of parallel electron

spins.

Empty Singly filled Doubly filled
orbitals orbitals orbitals
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The Pauli Exclusion Principle states that, in an atom or molecule, no two electrons can have the same four electronic quantum numbers. As an orbital can contain a
maximum of only two electrons, the two electrons must have opposing spins. This means if one is assigned an up-spin ( +1/2), the other must be down-spin (-1/2).

Electrons in the same orbital have the same first three quantum numbers, .., n.=1, {=0, m; = 0 for the 15subshell. Only two electrons can have these
numbers, o that their spin moments must be either m, = —1/2 or m, = +1/2. If the 15 orbital contains only one electron, we have one m, value and the
electron configuration is written as 15t (corresponding to hydrogen). If it is fully occupied, we have two m, values, and the electron configuration is 15
(corresponding to helium). Visually these two cases can be represented as

]l
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What is the Aufbau Principle?

The Aufbau principle dictates the manner in which electrons are filled in the atomic orbitals of an atom in its
ground state. It states that electrons are filled into atomic orbitals in the increasing order of orbital energy level.
According to the Aufbau principle, the available atomic orbitals with the lowest energy levels are occupied
before those with higher energy levels.

The word ‘Aufbau’ has German roots and can be roughly translated as ‘construct’ or ‘build up’. A diagram
illustrating the order in which atomic orbitals are filled is provided below. Here, 'n’ refers to the principal quantum
number and ‘I is the azimuthal quantum number.
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