Lichens and Mycorrhiza

Dr. Aditi Chatterjee Dept. of Botany VJR College

Lichens:

Fig: Different types of Lichens. (A) Leprose, (B) Crustose, (C) Foliose and (D) Fructose.

They are mainly classified on the basis of their morphology and size into 3 major categories namely:-

Crustose

- They are crust like.
- Tightly attached to the substrate.
- Have only upper surface.
- They are microlichens.

2. Foliose

- They are usually flat and leaf like and can be loosely to tightly attached.
- They have an upper and lower surface.
- · They are called macrolichens.

3. Fruticose

- •They are shrubby or bushy, sometimes they hang down.
- Most of them don't have any upper and lower surface but are often round in cross section.
- •They are also called macrolichens.

2.Cyphellae

- · They are aerating organs
- · Seen in lower cortex of foliose lichens as circular cavities
- Example:- Sticta sylvatica

4. cephallodia

- They are externally or internally gall like outgrowths, generally of dark color on the lichen thalli
- They consists of same fungal hyphae as in the thallus but the algal component is different

Fig. 20.5 (A-B). Lichens. A, Cephalodia in surface view; B, V. S. Thallus passing through the Cephalolium.

Lichen Asexual Reproduction

3. Isidia

- They are small, stalked coral like outgrowths from the upper surface of lichen thallus
- Function is increase the photosynthetic surface of thallus

Collema Usuea
EXAMPLES OF LICHENS HAVING ISIDIA

5.Soredia

- They are small bud like outgrowths on lichen thalli
- Greyish in color
- Soredia sometime produce a pustule like outgrowth is called sorelium

Fig. 10 (A-D). Lichens: Soredia. (A) Single soredium, (B-C) Stages in the formation of sorodium, (C) Soredia on thallus.

Lichen Sexual Reproduction

SEXUAL REPRODUCTION

- The sexual reproduction in Ascolichens and Basidiolichens is like class Ascomycetes and Basidiomycetes respectively.
- Ascolichens have been studied in more detail from this point of view.
- The male reproductive organ is called the spermogonium and the female is known as carpogonium.
- They develop either on the same hypha or on two different hyphae of the same mycelium.

Fig. 13. Lichens : Carpogonium. Vertical section of thallus passing through , Carpogonium

c) Sexual reproduction

Spermogonium:

- The male reproductive body is spermagonium (pycnium).
- It is flask-shaped cavity immersed in the thallus and opens to the exterior by small ostiole.
- The fertile hyphae lining the inner surface of the spermagonium produce large number of small non-motile gametes spermatia.
- The spermatia are functional male gametes.

Sexual Reproduction

- Fungal partner long-lived fruiting bodies release spores
- After germination the spore must meet a suitable algal partner before it can develop further

Ascocarps Ascocarps

- Most common
- spores in ascus
- usually 8 spores
- produced in perithecia & apothecia

Basidiomycota
Basidiocarps
- Spores on a
basidium ->

Fig. 13. Lichens : Carpogonium. Vertical section of thallus passing through Carpogonium

Fig. 18.13. Diagrammatic representation of spermagonium (pyonium) of *Physcla*.

Fig. 8. Lichens: Cyphellae. Vertical section of thailus

- Mycorrhizae are highly evolved, mutualistic associations between soil fungi and plant roots. It is commonly known as root fungi.
- This asoociation are members of the fungus kingdom (Basidomycetes, Ascomycetes and Zygomycetes) and most vascular plants.
- Host plant receives mineral nutrients while the fungus photosynthetically derived carbon compounds from the plants.

Introduction:

- Mycorrhizae are mutualistic symbiotic associations formed between the roots of higher plants and fungi.
- It is an Greek word, mykes: mushroom or fungi; rhiza: root.
- Fungal roots were discovered by the German botanist A B Frank in the last century (1855) in forest trees such as pine.
- In nature approximately 90% of plants are infected with mycorrhizae. 83% Dicots,79% Monocots and 100% Gymnosperms.
- Convert insoluble form of phosphorous in soil into soluble form.

Types of mycorrhizae:

- On the basis of morphological and anatomical features, mycorrhizae are divided into the three types.
- Endomycorrhizae
- 2. Ectomycorrhizae
- 3. Ectendomycorrhizae
- Endomycorrhizae further classified in to five types.
- 1. VAM fungi (vesicular arbuscular mycorrhizae)
- 2. Orchidoid mycorrhizae
- 3. Monotropoid mycorrhizae
- 4. Ericoid Mycorrhizae
- 5. Arbutoid mycorrhizae

Mycorrhiza

Figure 1.31: T.S. of root showing mycorrhizae

VAM fungi (Vesicular Arbuscule mycorrhizae):

- Fungi formed VAM association with plants may belongs to ascomycetes , basidiomycetes and zygomycetes.
- All VAM fungi are obligate biotrophic, as they are completely dependent on plants for their survival.

Endomycorrhizae:

It is a mycorrhizal association in which the fungal hyphae are present on root surface as individual threads that may penetrate directly into root hairs, other epidermal cells & into cortical cells.

Ectomycorrhizae:

■ Ectomycorrhizae (ECM) are association, where fungi form a mantle around roots. There is no hyphal penetration of cells. Fungal hypha is generally separate. A distinct Hartig's net is present between the cells.

Ectomycorrhizae (EM)

- The fungal mycelia extend inward, between root cortical cells, to form a network (Hartig net) and outward into the surrounding soil. Usually the fungal hyphae also form a mantle on the surface of the root.
- Hyphae do not penetrate into cells but contact with roots is very close and metabolites are transferred in both directions.
- Some ectomycorrhizae produce large above ground sporocarps or mushrooms which facilitate dispersal of spores along with underground fruiting bodies.
- Found on many woody plants ranging from shrubs to forest trees. Host plants belong to the families Pinaceae, Fagaceae, Betulaceae and Myrtaceae and a few others but no grasses.

3- Ectendomycorrhizae

- The fungi belong to Basidiomycotina, which covers both gymnosperms and Angiosperms plants.
- Ectendomycorrhizae show many of the same characteristics' of Endomycorrhizae but also show extensive intercellular penetration.
- The formation of Ectendomycorrhizae begins with formation of a hartig's net, which grows behind the apical meristem of the growing root.
- The hartig net penetrates between the epidermal and outer cortical cells and later extends to the inner cortex.

ECTENDOMYCORRHIZAE

Orchidoid Mycorrhizae:

■ Fungi belongs to basidiomycotina and colonize only member of family orchidaceae. This association is probably pseudomycorrhizal but play an important role in establishment of orchid seedlings.

Ericoid Mycorrhizae:

■ Fungal members are usually basidiomycetous and Ascomycotina. This is found in roots of plants belonging to order ericales. Rootlets are covered by a loosely woven mesh of dark brown septate hyphae from which branches penetrate the cortical cells.

Monotropoid Mycorrhizae:

The fungi belong to basidiomycotina, colonizing achlorophyllous members of angiosperms belonging to family monotropaceae. Fungal sheath present.

Arbutoid Mycorrhizae:

- Arbutoid mycorrhizal associations are variants of ectomycorrhizae found in certain plants in the ericaceae characterized by hyphae coils in epidermal cells.
- A major difference between the arbutoid and ectomycorrhizal association is that the hyphae of the former actually penetrate the outer cortical cells and fill them with coils.

Ecological Importance

- O Improvement of soil structure Stimulation of beneficial microbial activity
- O Water infiltration improvement Reduction of erosion and nutrient leaching

Applications of Mycorrhizae:

- Increase nutrient uptake of plant from soil.
 - P nutrition and other elements: N, K, Ca, Mg, Zn, Cu, S, B, Mo, Fe, Mn, Cl
- Increase diversity of plant.
- Produce uniform seedling.
- Significant role in nutrient recycling.
- More tolerant to adverse soil chemical constraints which limit crop production.
- Increase plant resistance to diseases and drought.
- Stimulate the growth of beneficial microorganisms.
- Improve soil structure.
 - Stable soil aggregate hyphal polysaccharides bind and aggregate soil particles.