
Partial Differential Equation 

Separation of Variables Technique 

Wave Equation in (1 + 1) dimensions (Cartesian co-ordinates) : 

                                        2y/x2 – 1/c2 2y/t2 = 0 

Assume : y(x, t) is ‘separable’ in the product form : y(x, t) = f(x) T(t). Subst. in the diff. 

eqn. : 

 d2f/dx2 T(t) – 1/c2 f(x) d2T/dt2 = 0. 

Note that f(x) and T(t) are functions of single variables. So their derivatives are not 

partial, but 

ordinary derivatives. Divide both sides by y(x, t), i.e., f(x) T(t). 

   f (x)/f (x) – 1/c2 T(t)/T(t)  =  0 

   f (x)/f(x)  = 1/c2 T(t)/T(t)   

Now, a function of ‘x’ cannot be equal to a function of ‘t’ for all values of x and t (they 

may, accidentally match at some particular pair of values of x and t), unless both are 

constant functions. [Note that ‘(x) = constant’ is a perfectly valid function.] So, we 

conclude :  

 f (x)/f(x)  = 1/c2 T(t)/T(t)  = C,  where ‘C’ is called the ‘separation constant’. 

If we chose the separation constant to be +ve, we shall have exponential solutions for 

both f(x) and T(t), but if we chose it to be –ve, we shall get sinusoidal (i.e., periodic) 

solutions. Suppose, we have the boundary conditions : 

(i) y(x, t) = 0 at x = 0 for all values of t, 

(ii) y(x, t) = 0 at x = L for all values of t. 

This requires the solutions to repeat their values at x = 0 and x = L. So, we choose : 

      C =  – k2 (i.e., -ve). 

  f (x)/f  = – k2,  T(t)/T  =  – c2k2 

   f(x) = A cos kx + B sin kx  and  T(t) = C cos (ckt) + D sin (ckt) 

  y(x, y) = [A cos kx + B sin kx] [C cos (ckt) + D sin (ckt)] 

This is one solution for a particular value of ‘k’, but different values of ‘k’ will generate 

different solutions. The general solution is obtained by superposing them as : 

 y(x, t) = k[Ak cos kx + Bk sin kx] [Ck cos (ckt) + Dk sin (ckt)] 

Note that the constants ‘Ak’, ‘Bk’, etc., may differ for different values of ‘k’. 

At x = 0, y = 0 for all values of t    0 = kAk [Ck cos (ckt) + Dk sin (ckt)] 

   Ak = 0 

   y(x, t) = kBk sin kx [Ck cos (ckt) + Dk sin (ckt)] 

At x = L, y = 0 for all values of y    either Bk = 0, or, sin kL = 0, 



but both Ak and Bk = 0 will lead to the ‘trivial solution’ y(x, t) = 0 for all x and t, which 

means that the wire is not vibrating at all.  

So, we turn towards the other choice : sin ka = 0    kL = n, or, k = n/L. 

We see, how the boundary condition can restrict the possible choices for ‘k’. 

Now,  y(x, t) = nBn sin (nx/L) [Cn cos (nct/L) + Dn sin (nct/L) ]. 

We have replaced ‘k’ by(nL) and re-parametrized the constants ‘Ak’, ‘Bk’, etc., as 

‘An’, ‘Bn’, etc. 

We may absorb the const. Bn in Cn and Dn , calling : Bn Cn = Cn  and  BnDn = Dn, so 

that : 

 y(x, t) = nsin (nx/L) [Cn cos (nct/L) + Dn sin (nct/L)]. 

This is the general solution (standing wave) for vibration of a stretched string, fixed at 

both ends. Struck String :  

 Now suppose, we have an initial condition : (iii) y(x, t) = 0 at t = 0 for all values 

of x. 

This will imply :  0  =  nsin (nx/L) Cn  = 0    Cn = 0 

   y(x, t) = nDnsin (nx/L) sin (nct/L)]. 

Plucked String :  

 If instead, we have the initial condition : (iii) y/t = 0 at t = 0 for all values of x, 

 y/t = nsin (nx/L)  (nc/L) [ –  Cn sin (nct/L) + Dn cos (nct/L)] 

   0  =  nsin (nx/L)  (nc/L) Dn 

   Dn = 0 

   y(x, t) = n Cnsin (nx/L) cos (nct/L)]. 

To evaluate the remaining constants, we shall require another set of initial conditions. 

 Suppose, in case of a plucked string, the initial shape of the wire is given as F(x). 

 At t = 0,  y(x, t) = n Cnsin (nx/L) = F(x) 

   F(x) is already expanded in a Fourier sin series   

              Cn  =  (2/L)  F(x) sin (nx/L) dx,  between the limits 0 and L. 


