Partial Differential Equation

Separation of Variables Technique

Wave Equation in $(1+1)$ dimensions (Cartesian co-ordinates) :

$$
\partial^{2} \mathbf{y} / \partial \mathbf{x}^{2}-1 / \mathbf{c}^{2} \partial^{2} \mathbf{y} / \partial \mathbf{t}^{2}=\mathbf{0}
$$

Assume : $\mathrm{y}(\mathrm{x}, \mathrm{t})$ is 'separable' in the product form : $\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}) \mathrm{T}(\mathrm{t})$. Subst. in the diff. eqn. :

$$
\mathrm{d}^{2} \mathrm{f} / \mathrm{d} \mathrm{x}^{2} \mathrm{~T}(\mathrm{t})-1 / \mathrm{c}^{2} \mathrm{f}(\mathrm{x}) \mathrm{d}^{2} \mathrm{~T} / \mathrm{dt}^{2}=0 .
$$

Note that $\mathrm{f}(\mathrm{x})$ and $\mathrm{T}(\mathrm{t})$ are functions of single variables. So their derivatives are not partial, but ordinary derivatives. Divide both sides by $y(x, t)$, i.e., $f(x) T(t)$.

$$
\begin{aligned}
& \Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})-1 / \mathrm{c}^{2} \mathrm{~T}^{\prime \prime}(\mathrm{t}) / \mathrm{T}(\mathrm{t})=0 \\
& \Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=1 / \mathrm{c}^{2} \mathrm{~T}^{\prime \prime}(\mathrm{t}) / \mathrm{T}(\mathrm{t})
\end{aligned}
$$

Now, a function of ' x ' cannot be equal to a function of ' t ' for all values of x and t (they may, accidentally match at some particular pair of values of x and t), unless both are constant functions. [Note that ' $\phi(\mathbf{x})=$ constant' is a perfectly valid function.] So, we conclude :

$$
\mathrm{f}^{\prime \prime}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=1 / \mathrm{c}^{2} \mathrm{~T}^{\prime \prime}(\mathrm{t}) / \mathrm{T}(\mathrm{t})=\mathrm{C} \text {, where ' } \mathrm{C} \text { ' is called the 'separation constant'. }
$$

If we chose the separation constant to be $+v e$, we shall have exponential solutions for both $f(x)$ and $T(t)$, but if we chose it to be -ve, we shall get sinusoidal (i.e., periodic) solutions. Suppose, we have the boundary conditions :
(i) $y(x, t)=0$ at $x=0$ for all values of t,
(ii) $y(x, t)=0$ at $x=L$ for all values of t.

This requires the solutions to repeat their values at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. So, we choose :

$$
\begin{aligned}
& C=-\mathbf{k}^{2}(\text { i.e., }-v e) . \\
\Rightarrow & f^{\prime \prime}(x) / f=-k^{2}, T^{\prime \prime}(t) / T=-c^{2} k^{2} \\
\Rightarrow & f(x)=A \cos k x+B \sin k x \text { and } T(t)=C \cos (c k t)+D \sin (c k t) \\
\Rightarrow & y(x, y)=[A \cos k x+B \sin k x][C \cos (c k t)+D \sin (c k t)]
\end{aligned}
$$

This is one solution for a particular value of ' k ', but different values of ' k ' will generate different solutions. The general solution is obtained by superposing them as :

$$
y(x, t)=\Sigma_{k}\left[A_{k} \cos k x+B_{k} \sin k x\right]\left[C_{k} \cos (c k t)+D_{k} \sin (c k t)\right]
$$

Note that the constants ' A_{k} ', ' B_{k} ', etc., may differ for different values of ' k '. At $\mathrm{x}=0, \mathrm{y}=0$ for all values of $\mathrm{t} \Rightarrow 0=\Sigma_{\mathrm{k}} \mathrm{A}_{\mathrm{k}}\left[\mathrm{C}_{\mathrm{k}} \cos (\mathrm{ckt})+\mathrm{D}_{\mathrm{k}} \sin (\mathrm{ckt})\right]$

$$
\begin{aligned}
& \Rightarrow A_{k}=0 \\
& \Rightarrow \mathrm{y}(\mathrm{x}, \mathrm{t})=\Sigma_{k} B_{k} \sin \mathrm{kx}\left[\mathrm{C}_{\mathrm{k}} \cos (\mathrm{ckt})+\mathrm{D}_{\mathrm{k}} \sin (\mathrm{ckt})\right]
\end{aligned}
$$

At $\mathrm{x}=\mathrm{L}, \mathrm{y}=0$ for all values of $\mathrm{y} \Rightarrow$ either $\mathrm{B}_{\mathrm{k}}=0$, or, $\sin \mathrm{kL}=0$,
but both A_{k} and $B_{k}=0$ will lead to the 'trivial solution' $y(x, t)=0$ for all x and t, which means that the wire is not vibrating at all.
So, we turn towards the other choice : $\sin \mathrm{ka}=0 \Rightarrow \mathrm{~kL}=\mathrm{n} \pi$, or, $\mathbf{k}=\mathbf{n} \pi / \mathbf{L}$.
We see, how the boundary condition can restrict the possible choices for ' k '.
Now, $y(x, t)=\Sigma_{n} B_{n} \sin (n \pi x / L)\left[C_{n} \cos (n \pi c t / L)+D_{n} \sin (n \pi c t / L)\right]$.
We have replaced ' k ' by $\left(n \pi / L\right.$) and re-parametrized the constants ' A_{k} ', ' B_{k} ', etc., as
' A_{n}, ' B_{n} ', etc.
We may absorb the const. B_{n} in C_{n} and D_{n}, calling : $\mathrm{B}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}{ }^{\prime}$ and $\mathrm{B}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=\mathrm{D}_{\mathrm{n}}{ }^{\prime}$, so that :

$$
y(x, t)=\Sigma_{n} \sin (n \pi x / L)\left[C_{n^{\prime}} \cos (n \pi c t / L)+D_{n}{ }^{\prime} \sin (n \pi c t / L)\right] .
$$

This is the general solution (standing wave) for vibration of a stretched string, fixed at both ends. Struck String :

Now suppose, we have an initial condition : (iii) $y(x, t)=0$ at $t=0$ for all values of x .
This will imply : $0=\Sigma_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \mathrm{C}_{\mathrm{n}}{ }^{\prime}=0 \Rightarrow \mathrm{C}_{\mathrm{n}}{ }^{\prime}=0$
$\left.\Rightarrow \mathbf{y}(\mathbf{x}, \mathrm{t})=\Sigma_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}{ }^{\prime} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \sin (\mathrm{n} \pi \mathrm{ct} / \mathrm{L})\right]$.

Plucked String:

If instead, we have the initial condition : (iii) $\partial y / \partial t=0$ at $t=0$ for all values of x, $\partial \mathrm{y} / \partial \mathrm{t}=\Sigma_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \times(\mathrm{n} \pi \mathrm{c} / \mathrm{L})\left[-\mathrm{C}_{\mathrm{n}}{ }^{\prime} \sin (\mathrm{n} \pi \mathrm{ct} / \mathrm{L})+\mathrm{D}_{\mathrm{n}}{ }^{\prime} \cos (\mathrm{n} \pi \mathrm{ct} / \mathrm{L})\right]$
$\Rightarrow 0=\Sigma_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \times(\mathrm{n} \pi \mathrm{c} / \mathrm{L}) \mathrm{D}_{\mathrm{n}}{ }^{\prime}$
$\Rightarrow \mathrm{D}_{\mathrm{n}}{ }^{\prime}=0$
$\left.\Rightarrow \mathbf{y}(\mathbf{x}, \mathrm{t})=\boldsymbol{\Sigma}_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{\prime} \sin (\mathbf{n} \pi \mathbf{x} / \mathrm{L}) \cos (\mathrm{n} \pi \mathrm{ct} / \mathrm{L})\right]$.
To evaluate the remaining constants, we shall require another set of initial conditions.
Suppose, in case of a plucked string, the initial shape of the wire is given as $\mathrm{F}(\mathrm{x})$.
At $\mathrm{t}=0, \mathrm{y}(\mathrm{x}, \mathrm{t})=\Sigma_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{\prime} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})=\mathrm{F}(\mathrm{x})$
$\Rightarrow \mathrm{F}(\mathrm{x})$ is already expanded in a Fourier sin series
$\Rightarrow C_{n}{ }^{\prime}=(2 / L) \int F(x) \sin (n \pi x / L) d x$, between the limits 0 and L.

